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Abstract. Aligning a pair of images in a mid-space is a common approach to 

ensuring that deformable image registration is symmetric – that it does not de-

pend on the arbitrary ordering of the input images. The results are, however, gen-

erally dependent on the choice of the mid-space. In particular, the set of possible 

solutions is typically affected by the constraints that are enforced on the two 

transformations (that deform the two images), which are to prevent the mid-space 

from drifting too far from the native image spaces. The use of an implicit atlas 

has been proposed to define the mid-space for pairwise registration. In this work, 

we show that by aligning the atlas to each image in the native image space, im-

plicit-atlas-based pairwise registration can be made independent of the mid-

space, thereby eliminating the need for anti-drift constraints. We derive a new 

symmetric cost function that only depends on a single transformation morphing 

one image to the other, and validate it through diffeomorphic registration exper-

iments on brain magnetic resonance images. 

1 Introduction 

Image registration – i.e., computation of a set of dense spatial correspondences among 

images – is a central step in most population and longitudinal imaging studies. Since 

linear transformation is usually not sufficient to account for cross-subject variation and 

temporal changes in the anatomy, deformable image registration often becomes a nec-

essary part of the analysis pipeline. In pairwise deformable registration, the choice of 

the reference space in which the two images are compared affects the registration, mak-

ing the resulting deformation field dependent on this choice. When the native space of 

one of the input images (say, the first image) is chosen as the reference, the registration 

becomes asymmetric, meaning that reversing the order of the input images will produce 

different spatial correspondences [1-11]. Pairwise registration has been proposed to be 

symmetrized by minimizing the average of two cost functions, each using one input 
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image as the reference space [1-4], yet integrating the mismatch measure non-uniformly 

in the native space of the interpolated image [11]. 

In a different approach to achieve symmetry, both images are deformed and com-

pared in a mid-space, thereby making registration invariant with respect to the ordering 

of the images [5-10]. Such approaches essentially minimize their cost functions with 

respect to two transformations 𝑇1  and 𝑇2  that take the two input images to the mid-

space. However, without additional constraints, this increases the degrees of freedom 

of the problem twofold, compared to the end result of pairwise registration that is the 

one transformation, 𝑇 = 𝑇2 ∘ 𝑇1
−1, taking the second input image to the first. Further-

more, if the images are compared in the mid-space (that depends on 𝑇1 and 𝑇2), the 

optimization algorithm is given the liberty to update the mid-space so as to decrease the 

cost function without necessarily changing the final result 𝑇. For example, the algo-

rithm can shrink the regions with mismatching image intensities to make the deformed 

images look more similar in the mid-space, without necessarily making them more sim-

ilar in the two native spaces. To alleviate these issues, additional constraints are used 

to keep the mid-space “in between” the native spaces of the two images. These anti-

drift constraints, which are different from those regularizing the transformations, define 

the mid-space. They typically either restrict the space of possible 𝑇1 and 𝑇2 (resulting 

in fewer degrees of freedom), or penalize those values of 𝑇1 and 𝑇2 that move the mid-

space away from the native spaces. The most common such constraints, proposed in 

the mid-space registration and atlas construction literature, are restrictions on 𝑇1 and 𝑇2 

to have opposite displacement [7, 8, 12-14] or velocity [9, 10, 15] fields. In large de-

formation models, geodesic averaging of the deformations has also been proposed, 

which preserves the properties of the transformations [5, 6, 16]. The choice of the anti-

drift constraints may bias the registration algorithm towards favoring a particular set of 

transformations, thereby affecting the resulting 𝑇. 

Unbiased atlas construction techniques, when applied to a pair of images, can con-

stitute mid-space pairwise registration, since the images are both deformed to the atlas 

space (i.e., the mid-space) [10, 16, 17]. In such a case, given that the desired output of 

pairwise image registration is the deformation field, but not the auxiliary atlas, one can 

substitute the atlas in the cost function with an analytical expression of the two de-

formed images, leading to an implicit-atlas cost function that is minimized with respect 

to the deformations. To that end, it was initially proposed to compare the deformed 

images to the atlas in the abstract mid-space [16]. A better justified generative model, 

however, progresses from the atlas to the images and compares the deformed atlas to 

the images (i.e., in the native image spaces) [18, 19], computing the atlas as a weighted 

average of the images [18]. Taking advantage of this native-space atlas construction 

resolves the issue of susceptibility to shrinkage-type problems, leading to a proper im-

plicit-atlas cost function for mid-space pairwise registration [10]. Nevertheless, the reg-

istration still remains a function of two transformations taking the images to a mathe-

matically defined mid-space. 

In this work, we point out for the first time the key fact that implicit-atlas pairwise 

registration is inherently independent of the mid-space. We show that the cost function 

only depends on the overall image-to-image transformation 𝑇, implying that the indi-

vidual image-to-atlas transformations 𝑇1 and 𝑇2 are redundant and unnecessary to keep, 



and that anti-drift constraints are indeed not needed. We derive a new cost function that, 

in contrast to the existing mid-space approaches, can be minimized directly with respect 

to 𝑇, with no anti-drift constraints. The proposed cost function is general and can be 

used with any transformation model, such as the displacement and velocity fields. 

We describe our methodology in Section 2, experimentally evaluate our approach 

on brain magnetic resonance images in Section 3, and conclude the paper in Section 4. 

2 Methods 

2.1 Mid-Space Approach to Registration Symmetry 

Let 𝐼1, 𝐼2: 𝛺 → ℝ be the two 𝑑-dimensional input images to be registered, where 𝛺 ⊆
ℝ𝑑. We want to compute the regular transformation 𝑇: 𝛺 → 𝛺 that deforms 𝐼2 so as to 

make 𝐼1 and 𝐼2 ∘ 𝑇 most similar to each other; a task that is often done by minimizing a 

cost function with respect to 𝑇. The data term of the common sum of squared differ-

ences (SSD) cost function can be formulated for instance as ‖𝐼1 − 𝐼2 ∘ 𝑇‖2
2  or 

‖𝐼1 ∘ 𝑇−1 − 𝐼2‖2
2. These two forms are not equivalent though, because the transformed 

image – which is different in each case – is integrated non-uniformly [1-4, 11], resulting 

in the registration asymmetry. 

In a popular approach to derive a symmetric cost function, both images are deformed 

to a mid-space [5-10]. Consequently, these cost functions depend on two transfor-

mations, 𝑇1, 𝑇2: 𝛺 → 𝛺, deforming images 𝐼1  and 𝐼2 , respectively. The deformed im-

ages are then often compared in the mid-space through a cost function such as 

‖𝐼1 ∘ 𝑇1 − 𝐼2 ∘ 𝑇2‖2
2, and the output is eventually computed as 𝑇 = 𝑇2 ∘ 𝑇1

−1. The mid-

space cost function is by definition invariant with respect to the ordering of the images. 

With no additional constraints, the dimension of the mid-space registration problem 

(solving for 𝑇1 and 𝑇2) is twice as big as the standard asymmetric problem (solving for 

𝑇). Also, the mid-space can drift arbitrarily far away from the native spaces of the im-

ages due to large changes in 𝑇1 and 𝑇2, for instance through combination with  a trans-

formation ℎ, as 𝑇1 ∘ ℎ and 𝑇2 ∘ ℎ, which decreases the mid-space cost function without 

changing the final 𝑇 = 𝑇2 ∘ ℎ ∘ ℎ−1 ∘ 𝑇1
−1 = 𝑇2 ∘ 𝑇1

−1. An example of this phenomenon 

is the situation where the optimization algorithm modifies 𝑇1 and 𝑇2 in order to shrink 

the regions where the two deformed images do not match, resulting in a decrease in the 

mid-space cost function, without necessarily changing the end result, 𝑇. To avoid these 

issues, additional constraints are often employed to keep the mid-space “in between” 

the native spaces. For instance, the two transformations may be forced to have opposite-

sign displacement fields, as 𝑇1(𝑥) = 𝑥 + 𝑢(𝑥) and 𝑇2(𝑥) = 𝑥 − 𝑢(𝑥), resulting in the 

constraint 𝑇1(𝑥) + 𝑇2(𝑥) = 2𝑥  (or similarly 𝑇1
−1(𝑥) + 𝑇2

−1(𝑥) = 2𝑥 ) [7, 8, 12-14]. 

This reduces the degrees of freedom and to some extent prevents the mid-space drift, 

however, at the expense of limiting our ability to model all possible transformations 𝑇. 

An extreme example of this limitation would be the 2D case with the true transfor-

mation 𝑇 being a 180° rotation about the origin, i.e. 𝑇(𝑥) = −𝑥, where no 𝑇1 and 𝑇2 

will simultaneously satisfy both 𝑇1(𝑥) + 𝑇2(𝑥) = 2𝑥 and 𝑇2(𝑥) = 𝑇 ∘ 𝑇1(𝑥). For large 

deformations, opposite-sign velocity fields [9, 10, 15] and geodesic averaging are used 

to preserve the properties of the transformations [5, 6, 16]. Since there is no unique way 



to define the mid-space, the registration results can depend on the choice of the con-

straints imposed on 𝑇1 and 𝑇2. 

Mid-space pairwise registration can also be performed by constructing an unbiased 

atlas from two images [10, 16, 17]. In atlas construction, the observed images are as-

sumed to be instances generated from an atlas image with some geometrical and inten-

sity variation. Therefore, the problem boils down to finding an atlas, 𝐴: Ω → ℝ, and 

regular transformations 𝑇1
−1 and 𝑇2

−1 that take the atlas from the mid-space to the native 

spaces of the two images, in such a way that the deformed versions of the atlas resemble 

the observed images. Using the SSD metric, the data term for such an optimization is 

the sum of two (asymmetric [18, 19]) subject-atlas distance terms, as in:1 

�̂�1, �̂�2, �̂� = argmin
𝑇1,𝑇2,𝐴

[∫ (𝐼1(𝑥) − 𝐴 ∘ 𝑇1
−1(𝑥))

2
d𝑥

Ω

+ ∫ (𝐼2(𝑧) − 𝐴 ∘ 𝑇2
−1(𝑧))

2
d𝑧

Ω

]. (1) 

Comparing the images to the atlas in the physically meaningful native image spaces 

complies with the generative model assumption that the image is generated as a de-

formed version of the atlas (not vice versa), and that the Gaussian noise is added to the 

deformed atlas [18, 19]. The changes of variables 𝑥 = 𝑇1(𝑦) and 𝑧 = 𝑇2(𝑦) leads to: 

argmin
𝑇1,𝑇2,𝐴

∫ [(𝐼1 ∘ 𝑇1(𝑦) − 𝐴(𝑦))
2

𝐽1(𝑦) + (𝐼2 ∘ 𝑇2(𝑦) − 𝐴(𝑦))
2

𝐽2(𝑦)] d𝑦
Ω

, (2) 

where 𝐽1(𝑦) ≔ det 𝜕𝑇1(𝑦) and 𝐽2(𝑦) ≔ det 𝜕𝑇2(𝑦) are the Jacobian determinants of 

the two transformations. The �̂�(𝑦) minimizing the cost function is derived as [18]: 

�̂�(𝑦) =
𝐽1(𝑦)𝐼1 ∘ 𝑇1(𝑦) + 𝐽2(𝑦)𝐼2 ∘ 𝑇2(𝑦)

𝐽1(𝑦) + 𝐽2(𝑦)
. (3) 

In an explicit-atlas scheme, the transformations and the atlas can be iteratively com-

puted from Eq. (1) and Eq. (3) [17]. However, the atlas can indeed be eliminated in Eq. 

(2) by substituting 𝐴(𝑦) with �̂�(𝑦), leading to an implicit-atlas data term [10]: 

�̂�1, �̂�2 = argmin
𝑇1,𝑇2

∫
(𝐼1 ∘ 𝑇1(𝑦) − 𝐼2 ∘ 𝑇2(𝑦))

2

𝐽1
−1(𝑦) + 𝐽2

−1(𝑦)
d𝑦

Ω

. (4) 

2.2 Independence from the Mid-Space 

Equation (4) is an optimization over both 𝑇1 and 𝑇2, which define the mid-space. 

Even so, further simplification reveals that the two transformations are redundant. The 

change of variables 𝑦 = 𝑇1
−1(𝑥), with d𝑦 = d𝑥 𝐽1 ∘ 𝑇1

−1(𝑥)⁄ , results in: 

                                                           
1  Regularization terms such as the Tikhonov integrals ∫ ‖∇𝑇1(𝑥) − 𝕀‖𝐹

2 d𝑥
Ω

 and ∫ ‖∇𝑇2(𝑥) −
Ω

𝕀‖𝐹
2 d𝑥 are also typically included in the cost function to keep the transformations meaningful 

and penalize excessive distortion. In this section, however, we focus only on the data term. 

The derivation of Eq. (4) is not impacted by the regularization terms, as they do not depend 

on 𝐴. Please note that anti-drift constraints are needed in addition to the regularization terms. 



�̂�1, �̂�2 = argmin
𝑇1,𝑇2

∫
(𝐼1(𝑥) − 𝐼2 ∘ 𝑇2 ∘ 𝑇1

−1(𝑥))
2

1 +
𝐽1 ∘ 𝑇1

−1(𝑥)

𝐽2 ∘ 𝑇1
−1(𝑥)

d𝑥
Ω

. 
(5) 

Recall that the output transformation 𝑇 is computed as 𝑇(𝑥) = 𝑇2 ∘ 𝑇1
−1(𝑥), the Ja-

cobian determinant of which is 𝐽(𝑥) ≔ det 𝜕𝑇(𝑥) = 𝐽2 ∘ 𝑇1
−1(𝑥) 𝐽1 ∘ 𝑇1

−1(𝑥)⁄ . It now 

becomes clear that the above integral is, remarkably, only a function of 𝑇, and that the 

optimization can be written independently of the individual 𝑇1 and 𝑇2, as: 

�̂� = argmin
𝑇

𝐷(𝐼1, 𝐼2, 𝑇), 

𝐷(𝐼1 , 𝐼2, 𝑇) ≔ ∫ (𝐼1(𝑥) − 𝐼2 ∘ 𝑇(𝑥))
2 𝐽(𝑥)

1 + 𝐽(𝑥)
d𝑥

Ω

. 

(6) 

Thus, we can minimize this cost-function data term directly with respect to 𝑇, as 

opposed to the previous methods that optimize their cost functions with respect to both 

𝑇1 and 𝑇2, conditioned to constraints that prevent the mid-space drift. 

With 𝐷(𝐼1, 𝐼2, 𝑇) being independent of 𝑇1 and 𝑇2, the mid-space disappears, elimi-

nating the problem of the mid-space drift as well. We do not need to enforce any anti-

drift constraints anymore, hence not biasing the space of possible transformations 𝑇 by 

the particular choice of such constraints. This is all while keeping the degrees of free-

dom of the optimization half of that of the unconstrained problem of solving for both 

𝑇1 and 𝑇2. In addition, no transformation needs to be inverted to compute 𝑇, as opposed 

to most existing mid-space approaches that need to invert 𝑇1 to compute 𝑇 = 𝑇2 ∘ 𝑇1
−1. 

These advantages are especially valuable for displacement-field parameterized trans-

formations, inverting which is a difficult and inexact task. Lastly, one can verify the 

expected symmetry of the proposed data term, i.e. 𝐷(𝐼1, 𝐼2, 𝑇) = 𝐷(𝐼2, 𝐼1, 𝑇−1). Note 

that this symmetry holds only in the continuous domain. In the discrete case, where one 

image is resampled and the other is not, discretization artifacts produce a bias [19-21]. 

Equation (6) might seem like a non-uniform integral in the native space of 𝐼1. How-

ever, this cost function originates from Eq. (1), which is the sum of two integrals taken 

uniformly in the native spaces of images, and non-uniformly only in the abstract mid-

space. Therefore, the pitfalls associated with non-uniform integration in native spaces 

[11] are not expected to arise. We subsequently showed that Eq. (1) can be written 

independently of not only the atlas (Eq. (4) [10]), but also the mid-space itself (Eq. (6)). 

2.3 Implementation 

We implement the proposed registration method via the diffeomorphic demons scheme 

[22], and minimize 𝐷(𝐼1, 𝐼2, 𝑇) of Eq. (6) by gradient descent with line search. Similar 

to the demons algorithm, 𝑇 is regularized by Gaussian blurring between each two de-

scent iterations. We use a compositive scheme and update 𝑇 by composing it with a 

transformation 𝑆, chosen to be the exponential of the update field. At each iteration, we 



fix 𝑇 and 𝐽, and compute the variation of 𝐷(𝐼1, 𝐼2, 𝑇 ∘ 𝑆) with respect to 𝑆, with 𝑆 cur-

rently assumed to be the identity transformation. Then, to preserve the diffeomorphism, 

we initialize 𝑆(𝑥) = 𝑥 − 2−𝑀Δ
𝛿𝐷

𝛿𝑆
|

𝑆=𝕀
 (for a large enough 𝑀), with Δ the step size, and 

compose it with itself (𝑆 ← 𝑆 ∘ 𝑆) 𝑀 times, before updating 𝑇 as 𝑇 ← 𝑇 ∘ 𝑆 [22]. The 

variation is computed as follows (derivations omitted): 

𝛿

𝛿𝑆
𝐷(𝐼1, 𝐼2, 𝑇 ∘ 𝑆)|

𝑆=𝕀
= −

2(𝐼1 − 𝐼2 ∘ 𝑇)𝐽

(1 + 𝐽)2
(∇𝐼1 + 𝐽∇(𝐼2 ∘ 𝑇)) +

2(𝐼1 − 𝐼2 ∘ 𝑇)2𝐽

(1 + 𝐽)3
∑ 𝐻𝑘. (𝐶𝑘,:)

T
𝑑

𝑘=1

, (7) 

where 𝐶 is the cofactor matrix of 𝜕𝑇 with 𝐶𝑘,: its 𝑘th row, and 𝐻𝑘  is the Hessian matrix 

of the 𝑘th element of 𝑇. The notation (𝑥) has been dropped for brevity. The last term of 

Eq. (7) involves the Hessian tensor of the deformation field, which can introduce large 

discretization error. In fact, the imprecision due to the discretization of the second de-

rivative may outweigh the accuracy that this term is expected to bring about. In our 

experiments, ignoring this second-order term improved the optimization of Eq. (6). 

3 Experimental Results 

We tested the proposed deformable registration method on 2D slices of brain magnetic 

resonance images, using our in-house Matlab implementation of the diffeomorphic de-

mons with the compositive scheme [22] (see Section 2.3). We compared our symmetric 

mid-space-independent registration method with the popular symmetrization approach 

that minimizes the average of the forward and backward cost functions [1-4], simplified 

in the form of ∫ (𝐼1(𝑥) − 𝐼2 ∘ 𝑇(𝑥))
2 1+𝐽(𝑥)

2
d𝑥

Ω
, with −(𝐼1 − 𝐼2 ∘ 𝑇)(𝐽∇𝐼1 + ∇(𝐼2 ∘ 𝑇)) 

being its compositive gradient. Each registration experiment consisted of 2000 gradient 

descent iterations, and was repeated with the demons regularization parameter taking a 

range of 22 different values. 

3.1 Retrieval of Synthetic Deformations 

In the first set of experiments, we compared the two algorithms on the mid-sagittal 

planes of 20 brain images taken from the publicly available OASIS database [23], 

which were pre-processed in FreeSurfer [24]. From each intensity-normalized and 

resampled volume (1-mm³ isotropic voxel), the sagittal slice located four voxels to the 

right of the mid-sagittal plane was extracted, and resampled to the size 128×128 (Figure 

1a). For each subject, two random deformation fields 𝑇1
synth

 and 𝑇2
synth

 were synthe-

sized, spatially low-pass filtered, and applied to the sagittal slice, 𝐼, to produce two 

synthetically deformed images, 𝐼1 = 𝐼 ∘ 𝑇1
synth

 and 𝐼2 = 𝐼 ∘ 𝑇2
synth

 (Figure 1b,c), 

which were then registered with each other using both methods (Figure 1d,e). Ideally, 

we would expect to retrieve a transformation 𝑇 satisfying 𝑇1
synth

≈ 𝑇2
synth

∘ 𝑇. Accord-

ingly, we computed the error ∫ ‖𝑇1
synth(𝑥) − 𝑇2

synth
∘ 𝑇(𝑥)‖

2

2
d𝑥

Ω
, and for each subject 

and method, chose the best result (with the smallest error) across the experiments with 



different demons regularization values. Our mid-space-independent registration re-

sulted in a lower error than the symmetrization method did in 14 out of the 20 subjects. 

On average, the error was 0.2% ± (SE) 0.2% lower for our method. We also ran the 

experiments in the reverse direction, and computed the inverse-consistency error, 

∫ ‖𝑇forward ∘ 𝑇backward(𝑥) − 𝑥‖2
2d𝑥

Ω
, which was 4% ± 2% lower for our method than 

for the symmetrization method. 

3.2 Cross-Subject Registration of Labeled Images 

We performed a second set of experiments on a dataset of brain images with 37 neuro-

anatomical structures manually labeled [25]. We chose a fixed coronal slice maximiz-

ing the number of included distinct labels across the subjects (Figure 2). We randomly 

selected 40 pairs of subjects, and registered the chosen slices using the two methods. 

Although cross-sections of labels of 3D structures are not so precise for empirical val-

idation, slice registration, being much faster than volumetric registration, allowed us to 

run many more experiments with a wide range of regularization. 

We first considered 12 key subcortical regions: left/right amygdala, caudate, hippo-

campus, pallidum, putamen, and thalamus. As a similarity score for comparing the two 

methods, we computed in the union of these regions the portion of the voxels with 

matching labels between the two images. For each method and pair of subjects, we 

chose the maximum score achieved across different values of the demons regularization 

parameter. When the labels were compared in the native space of 𝐼1, the two methods 

achieved on average similar scores (difference: 0.0% ± 0.2%). On the other hand, when 

the scores were computed in the native space of 𝐼2 (by nearest-neighbor interpolation), 

the proposed method resulted in 0.10% ± 0.16% higher score than the symmetrization 

approach did. 

 In a different comparison, we computed the similarity score for each experiment by 

averaging the Dice’s similarity coefficient across all of the labels. When the label over-

laps were computed in the native space of 𝐼1, the symmetrization approach produced a 

significant 0.7% ± 0.2% higher similarity score compared to the proposed method. 

When the scores were computed in the native space of 𝐼2, however, the two algorithms 

performed similarly (0.0% ± 0.2%). 

 
Figure 1.  The original image (a) was deformed by two synthetic random transfor-

mations (b,c). The deformed images were then registered with each other, resulting 

in deformation fields by the proposed (d) and the symmetrization (e) methods. 

 



4 Conclusions 

We have demonstrated for the first time that implicit-atlas pairwise registration is in-

herently independent of the mid-space, which led to deriving a new symmetric data 

term for deformable image registration. The independence of the cost function from the 

two image-to-atlas transformations alleviates the need for enforcing anti-drift con-

straints that can potentially bias the results. Our method is especially advantageous for 

the displacement-field transformation models, since inverting a velocity-field transfor-

mation is straightforward. We validated our method through experiments on two brain 

image datasets. Future work includes: a comprehensive evaluation of the proposed 

method on 3D labeled data; investigating the practicality of the proposed framework 

for group-wise registration; and devising a suitable symmetric regularization scheme. 
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