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Abstract. Diffuse optical tomography (DOT) is a noninvasive imag-
ing technology that is sensitive to local concentration changes in oxy-
and deoxyhemoglobin. When applied to functional neuroimaging, DOT
measures hemodynamics in the scalp and brain that reflect competing
metabolic demands and cardiovascular dynamics. Separating the effects
of systemic cardiovascular regulation from the local dynamics is vitally
important in DOT analysis. In this paper, we use auxiliary physiological
measurements such as blood pressure and heart rate within a Kalman
filter framework to model physiological components in DOT. We validate
the method on data from a human subject with simulated local hemody-
namic responses added to the baseline physiology. The proposed method
significantly improved estimates of the local hemodynamics in this test
case. Cardiovascular dynamics also affect the blood oxygen dependent
(BOLD) signal in functional magnetic resonance imaging (fMRI). This
Kalman filter framework for DOT may be adapted for BOLD fMRI anal-
ysis and multimodal studies.

1 Introduction

Diffuse optical tomography (DOT) is a noninvasive imaging technology that uses
near infrared (IR) light to image biological tissue. The dominant chromophores
in this spectrum are oxyhemoglobin (HbO), deoxyhemoglobin (HbR), lipids and
water. The basis of DOT is in vivo near infrared spectroscopy of these dominant
chromophores in the tissue. Tomographic images in DOT are constructed by
simultaneously measuring from many local regions that cover a larger volume
of tissue. The in-plane resolution limit of DOT increases rapidly with depth be-
cause biological tissue is a highly scattering medium for near infrared light. This
diffuse property of the light also limits the penetration depth in adult human
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brain imaging to about 3 cm, which is sufficient to study most of the cerebral
cortex. See Gibson et al. for a complete description of DOT [1]. Clinical and
research applications of DOT arise due to is its specificity to the physiologically
relevant chromophores HbO and HbR. Potential clinical and research applica-
tions for DOT abound in brain injury, degenerative neurovascular diseases and
in cognitive neuroscience. Other research areas for DOT include fetal and neona-
tal monitoring and breast cancer detection. DOT is particularly suitable for in
situ monitoring and multi-modal imaging [2].

The dynamics measured with DOT in the functional neuroimaging applica-
tion are caused by local changes in blood volume and oxygenation in the scalp
and in the brain. Due to the physical constraints of noninvasive imaging with
DOT, the scalp and brain effects are combined in the measurements. The mea-
sured hemodynamics are caused by blood pressure regulation, cerebral blood flow
autoregulation, local vasomotion and the vascular response to neuronal activity.
Complexity arises because of interactions between these factors. The primary
aim of DOT functional neuroimaging is to separate the stimulus related brain
function signal from the background physiology related signal. The main prob-
lem is that the latter of these two is much stronger. A method to help resolve
the physiological components in DOT is to include noninvasive auxiliary phys-
iological measurements in the analysis. Many instruments can be used during
DOT experiments. Examples are the blood pressure monitor, pulse oximeter,
electrocardiogram (ECG), chest band respirometer, spirometer and capnograph.
A further complexity of DOT analysis is that even when auxiliary physiology
is included in the analysis, their effects do not appear to be stationary in time
or space. We commonly observe that signal dynamics that are correlated with
respiration, for example, will vary significantly in amplitude and relative phase
angle at different measurement locations even when breathing rate and depth are
held constant. The present objective is to separate the physiological components
of DOT with a dynamical model.

State-space estimation has previously been applied to DOT without phys-
iological regressors [3]. Prince et al. [4] fit the amplitude and phase angle of
three non-stationary sinusoids to DOT time-series data using the Kalman filter.
While supporting the principle of using the Kalman filter in DOT analysis, the
three-sinusoid model does not allow for the most commonly used event related
experimental designs nor can it use readily available physiological measurements
such as blood pressure as a regressor. Zhang et al. used principal component
analysis (PCA) to reduce the background physiological variance in functional
neuroimaging experiments [5]. Anecdotal evidence was presented that certain
principal components correlate with blood pressure and respiratory dynamics.
This observation of statistically uncorrelated blood pressure and respiratory dy-
namics contradicts known respiratory interactions in blood pressure regulation
[6]. Due to physiological interactions, the orthogonal projections in PCA are
more likely to be mixtures of physiological effects. Standard linear regression
methods in fMRI analysis [7] accept multiple regressors that could easily include
auxiliary physiological measurements but will not accommodate temporal non-
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stationarity of the linear models. Dynamical system identification for fMRI is
at the forefront of new analysis methods [8]. These advances in fMRI have not
extended to DOT thus far mainly because the DOT inverse problem is typically
ill posed and requires a more complicated physical model. In this paper, we
present a framework that employs the Kalman filter for dynamical modeling of
the physiological components of DOT.

2 Methods

The Kalman filter is a recursive solution to discrete linear filtering and prediction
problems [9]. The objective of the Kalman filter is to estimate the time-varying
states of a discrete-time process that is described by stochastic equations for up-
dating the states and measurements over time. There are many ways to model
the same physical system within the generality of the Kalman filter. Our pro-
posed Kalman filter model of the DOT system begins by naming the constants
in table 1 and naming the model variables in table 2. The respective sizes of
each variable are indicated with a parenthetical subscript notation and those
that vary with time are indicated.

The inputs u in the DOT model are the Boolean stimulus time vector and
time-series physiological measurements such as blood pressure and heart rate
variability. The states x in the DOT model are the discrete finite impulse re-
sponse (FIR) functions that are convolved with the inputs to yield local concen-

Table 1. Length constant names

nu inputs (regressors) nw wavelengths
nd source-detector pairs nc chromophores
ns voxels ng spatial basis functions
nr regression time points nh temporal basis functions
nx states (nx = nuncngnh) ny measurements (ny = nwnd)
nz auxiliary states (nz = nuncngnr) nk total time points

Table 2. Variable names and sizes

k(t) time index u(nu,1)(t) input vector
x(nx,1)(t) state vector V(nx,nx)(t) state covariance
w(nx,1)(t) process noise Q(nx,nx) process noise covariance
z(nz,1)(t) auxiliary state vector y(ny,1)(t) measurement vector
v(ny,1)(t) measurement noise R(ny ,ny) meas. noise covariance
A(nx,nx) state update model B(nz ,nz) auxiliary update model
C(nz,nu) auxiliary input model D(ny,nx)(t) measurement model
K(nx,ny)(t) Kalman gain matrix S(ny,nuny) summing matrix
U(nuncng ,nz)(t) input matrix M(nuncng ,nz) input mask matrix
L(nuny,nunwns) pathlength matrix L0(nwnd,nwns) pathlength submatrix
G(nunwns,nunwng) spatial basis set G0(ns,ng) spatial basis submatrix
E(nunwng ,nuncng) extinction matrix E0(nw ,nc) extinction submatrix
H(nz,nx) temporal basis set H0(nr ,nh) temporal basis submatrix
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tration changes in HbO and HbR. In order to perform this convolution within a
Kalman filter framework, it is convenient to define auxiliary states z that merely
store a regression length nr of most recent inputs. The measurements y are the
time-series of changes in optical density (∆OD) for each source-detector pair
and wavelength. This discrete-time process can be described as

xk = Axk−1 + wk−1 (1)
zk = Bzk−1 + Cuk (2)
yk = D(zk)xk + vk . (3)

In order to include a physical model for the DOT inverse problem, the model
elements A, B, C and D are defined as

A = I(nx) (4)

B = I(nuncng) ⊗
[
0(1,nr−1) 0
I(nr−1) 0(nr−1,1)

]
(5)

C = I(nu) ⊗ 1(ncng,1) ⊗
[
1 0(nr−1,1)

]
(6)

S = 1(1,nu) ⊗ I(ny) (7)
L = I(nu) ⊗ L0 (8)
G = I(nunw) ⊗ G0 (9)
E = I(nu) ⊗ E0 ⊗ I(ng) (10)
M = I(nuncng) ⊗ 1(1,nr) (11)
H = I(nuncng) ⊗ H0 (12)

U(zk) = 1(nuncng,1)zT
k � M (13)

D(zk) = SLGEU(zk)H , (14)

where T is the transpose operator, ⊗ is the Kronecker tensor product, � is term-
by-term array multiplication, I is the identity matrix, 1 is a matrix of ones, 0 is
a matrix of zeros and matrix sizes are indicated with parenthetical subscripts.
The submatrix L0 is a block diagonal matrix formed from meassurement by
voxel average effective pathlengths for each wavelength as described by [10].
The columns of G0 contain a set of spatial basis functions that can be used to
reduce the number of states and/or impose spatial smoothing of the state esti-
mates. Known optical extinction coefficients are contained in the wavelength by
chromophore submatrix E0. The columns of H0 contain temporal basis functions
to reduce the number of states and/or impose temporal smoothing.

The Kalman filter is a recursive solution to the state estimation problem
for the discrete-time process described by equations 1, 2 and 3. The recursions
require initialization of the state estimate x̂0 and estimated state covariance V̂0
and then proceed with the following prediction-correction algorithm

x̂k|k−1 = Ax̂k−1|k−1 (15)
zk|k−1 = Bzk−1|k−1 + Cuk (16)
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V̂k|k−1 = AtV̂k−1|k−1AT + Q (17)

Uk = 1(nuncng,1)zT
k|k−1 � M (18)

Dk = SLGEUkH (19)

Kk = V̂k|k−1DT
k

(
DkV̂k|k−1DT

k + R
)−1

(20)

x̂k|k = x̂k|k−1 + Kt

(
yk − Dkx̂k|k−1

)
(21)

zk|k = zk|k−1 (22)

V̂k|k = V̂k|k−1 − KkDkV̂k|k−1 . (23)

We designed an experiment to test the basic functionality of this proposed
method. We combine real DOT data with a simulated functional response and
then analyze the result with static deconvolution and the proposed Kalman filter
method. This experiment allows us to compare the estimated responses with
the “true” response. Only a single trial is examined so the results are mainly
illustrative. Data was collected from a human subject who was instructed to sit
quietly and breath freely. Measurements were taken with a continuous wave DOT
instrument [11] then demodulated and down sampled to 1 Hz. The measurements
were high pass filtered in a forward then reverse direction with a 6th order IIR
Butterworth filter with a cutoff frequency of 0.05 Hz and zero phase distortion.
This filtering removes slow physiology that is sufficiently outside the frequency
range of interest for the hemodynamic response that it can be ignored. Short-
term variability including the respiratory sinus arrhythmia, Mayer waves and
vasomotion remain after filtering. The photon fluence Φ(t, λ) was then converted
to a change in optical density ∆OD

∆OD(t, λ) = ln
(

Φ(t, λ)
Φ0(λ)

)
, (24)

where Φ0 is average detected photon fluence, ∆OD(t, λ) are measurements y as
a function of time t and wavelength λ. The three model inputs contained in u
were the Boolean stimulus time vector, the blood pressure (BP) and heart rate
variability (HRV) with normalized variances.

Data from only a single source fiber and three detector locations were in-
cluded in the analysis. The three detectors were arranged about 2 cm apart
in a row and the source was placed 3 cm away from the center detector and
equidistant from the other two. Three voxels defined the tissue volume under
the optical probes. Voxel 1 represented the scalp and was common to all the
detectors. Voxels 2 and 3 represented two regions of the brain located under
the scalp voxel. A simulated functional response was added into the baseline
hemodynamics in voxel 2. The stimulus paradigm was event related with a 12
to 18 second inter-stimulus interval over the 300 second trial. The model used
to simulate the hemodynamics was one period of a raised cosine with a delay
and amplitude set differently for the HbO and HbR functional responses. The
simulated waveforms can be seen in the results figures.

The pathlength submatrix L0 was computed with a diffusion approximation
to the transport equation for a semi-infinite medium [10]. An identity matrix
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was used for the spatial basis set G0 and a normalized Gaussian function was
used for the temporal basis set H0. The standard deviation for the Gaussian
function was fixed at 1.5 seconds and the means were separated by 1.5 seconds
over the regression time. The same temporal basis set was used for the static de-
convolution. The state update noise covariance Q only contained nonzero terms
on the diagonal elements. Diagonal terms related to the functional response were
set to 3 × 10−6 and those related to BP and HRV were set to 10−5. This imbal-
ance in state update noise caused the functional response model to evolve more
slowly than the systemic physiological models. The measurement noise covari-
ance matrix R was set to an identity scaled by 10−3. These variances act as
regularization and were adjusted to stabilize the estimation scheme.

3 Results

The state estimates from the Kalman filter were propagated through the forward
model to calculate the component of the measurements that relates to each input.
An example result of this signal separation for the 890 nm measurement from
detector 1 is shown in figure 1. The functional response to the stimulus only
accounts for 2.8% of the variance in the measurement whereas BP and HRV
account for 11.3% and 77.9% respectively. The sum of the modeled components
accounts for over 99.9% of the variance in the measurement.

The results of the static deconvolution analysis to recover the functional
hemodynamic response is shown in figure 2. The functional responses are clearly
present in the estimates but are distorted by large physiological noise artifacts.
Compared to the true hemodynamics, the HbO estimate resulted in R2 = 0.78,
which is reasonably good considering that the physiological noise dominates the
measurement. For the smaller HbR signal, R2 = 0.57 with the true hemodynam-
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Fig. 1. Separating a ∆OD measurement into components related to each model input.
The scale for each component of ∆OD was shifted for visual comparison.
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Fig. 2. Result for deconvolution of functional response from hemodynamics in voxel 2
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Fig. 3. Result for proposed Kalman filter estimate functional response in voxel 2

ics, indicating that the physiological noise artifacts are of comparable magnitude
to the actual response.

The result for the Kalman filter was taken to be the last state estimate
computed during a forward pass through the data. This result, shown in fig-
ure 3, appears to be a significant improvement over the deconvolution approach.
The HbO estimate improved to R2 = 0.99 and the HbR estimate jumped to
R2 = 0.89. There is some lag in the Kalman filter result which may have been
caused by only using a forward pass through the data.

4 Discussion

We successfully implemented the Kalman filter for system identification in DOT.
Based on the preliminary results described, the proposed analysis framework may
help to improve estimates of functional hemodynamics in DOT neuroimaging.
This result is potentially significant because improved hemodynamic estimates
could make a broader range of brain activation paradigms possible with DOT.
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The ability to separate signals into physiological components may also reveal
new information about the local regulatory physiology and may be useful in
identifying certain vascular pathologies. Unlike the prior work with the Kalman
filter for DOT, the present formulation has the flexibility to be applied to any
experimental design and for problems of reasonably large spatial and temporal
dimension. The proposed Kalman filter formulation may also be useful for other
imaging modalities such as fMRI, MEG and EEG or when multiple modalities
are combined with a single state-space model of the underlying physiology.
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