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Does the photon-diffusion coefficient depend on
absorption?
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We investigate the controversy over the precise form of the photon diffusion coefficient and suggest that it is
largely independent of absorption, i.e., D0 5 v/3ms8 . After presentation of the general theoretical arguments
underlying this assertion, Monte Carlo simulations are performed and explicitly reveal that the absorption-
independent diffusion coefficient gives better agreement with theory than the traditionally accepted photon
diffusion coefficient, Dma

5 v/3(ms8 1 ma). The importance of resolving this controversy for the proper char-
acterization of the material optical properties is discussed. © 1997 Optical Society of America
[S0740-3232(97)01912-1]
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1. INTRODUCTION
Human tissues are turbid media wherein the transport of
near-infrared photons is modeled quite well by the diffu-
sion equation. Recently, there has been substantial in-
terest in using near-infrared light to probe human tissues
for localized heterogeneities such as breast and brain tu-
mors, and several algorithms based on the photon diffu-
sion equation for detecting and characterizing tumors
have been developed.1–11

Nevertheless, there has been some confusion in the
community about the exact form of the light diffusion con-
stant in media with both absorption and scattering. Spe-
cifically, in most derivations of the diffusion equation
from the transport equation, the diffusion coefficient D is
found to be Dma

5 v/3(ms8 1 ma),4,12–17 where ms8 is the
medium reduced scattering coefficient, ma is its absorp-
tion coefficient, and v is the speed of light in the medium.
Recently, however, it has been suggested that D should
be independent of absorption, i.e., D0 5 v/3ms8 .18,19

Resolution of this problem is important for accurate de-
termination of optical properties, particularly in media
wherein absorption is large.

In this paper we use Monte Carlo techniques to suggest
that the photon diffusion coefficient is independent of ab-
sorption. A theoretical discussion similar to that given
by Furutsu and Yamada18 is first developed to illustrate
the differences in a particular transformation property of
the photon transport equation and the photon diffusion
equation. In this case it is argued that the transforma-
tion property should be preserved, and this is possible
0740-3232/97/123358-08$10.00 ©
only when D 5 D0 . This analysis provides some reasons
to reject the traditional photon diffusion coefficient. We
then develop a Monte Carlo program to simulate the
propagation of photons in infinite, homogeneous, and iso-
tropic media with optical properties resembling those of
human tissues. Comparing the Monte Carlo results and
photon diffusion theory by using the two different diffu-
sion coefficients, we quantitatively demonstrate that
agreement between experiment and theory is improved
when D 5 D0 .

Characterization of tissue optical properties is an im-
portant goal of diffuse optical tomography.6,20–22 In some
cases the agreement between diffusion theory and obser-
vation will depend on the exact nature of the diffusion co-
efficient. For example, reconstruction methods based on
perturbation theory will have different dependencies on
the variations in ma and ms8 . We demonstrate that the
characterization is accurate to better than 1% when D
5 D0 and ma , 0.1ms8 ; when D 5 Dma

, characterization
errors are approximately 10% for ma 5 0.1ms8 .

2. THEORY
The photon diffusion equation is an approximation of the
photon transport equation [Eq. (1)], which is known to de-
scribe accurately the propagation of photons through ran-
dom, turbid, highly scattering media.1,12,13 We will first
consider some general properties of the transport equa-
tion. The transport equation is
1997 Optical Society of America
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where L(r, V̂, t) is the radiance at position r traveling in
direction V̂ at time t with units of W m22 sr21

(sr5steradian5unit solid angle), f(V̂, V̂8) is the normal-
ized phase function representing the probability of scat-
tering into a solid angle V̂8 from angle V̂, v is the speed of
light in the medium in cm s21, ms is the scattering coeffi-
cient in cm21, ma is the absorption coefficient in cm21,
m t 5 ms 1 ma is the transport coefficient, and S(r, V̂, t)
is the spatial and angular distribution of the source in
W m23 sr21.

This equation has an interesting transformation prop-
erty for the case of homogeneous turbid media:

L~r, V̂, t ! 5 exp~2vmat !L0~r, V̂, t !. (2)

Here L(r, V̂, t) is the solution of the transport equation
in the absorbing media, and L0(r, V̂, t) is the solution in
the same media, but with zero absorption. The validity
of this transformation is checked by substituting Eq. (2)
into Eq. (1) and assuming that the source S(r, V̂, t) is
zero for r Þ 0. After substitution we obtain the following
absorption-independent transport equation for
L0(r, V̂, t):

1
v
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]t
1 ¹ • L0~r, V̂, t !V̂ 1 msL0~r, V̂, t !

5 msE L0~r, V̂8, t !f~V̂, V̂8!dV̂8. (3)

We see that the time-dependent impulse response of a ho-
mogeneous medium has two separable parts: one that is
determined by the scattering coefficient @L0(r, V̂, t)#,
and one that is determined by the medium absorption
@exp(2vmat)#. This property has been shown to apply for
photon propagation in turbid media and has been further
exploited by others.23–26

In light of this observation, diffusion theory might be
expected to have the same transformation property.
This follows because the diffusion theory is derived from
transport theory, and thus its solutions are a subset of the
solutions of the transport equation [Eq. (1)]. The tradi-
tional time-dependent photon diffusion equation is1,12

¹2U~r, t ! 2
vma

Dma

U~r, t ! 2
1

Dma

]U~r, t !

]t

5 2
1

Dma

S~r, t !, (4)

where U(r, t) is the photon density at position r and time
t, v is the speed of light in the medium, S(r, t) is the
source term, and Dma

is the traditional diffusion coeffi-
cient

Dma
5 v/3~ms8 1 ma!, (5)
in which ma is the absorption coefficient and ms8 5 ms(1
2 g) is the reduced scattering coefficient, where g is the
scattering anisotropy. In analogy with the solutions of
the transport equation [Eq. (2)], we might expect that

U~r, t ! 5 U0~r, t !exp~2vmat !, (6)

J~r, t ! 5 J0~r, t !exp~2vmat !, (7)

where U(r, t) @J(r, t)# is the photon density (photon flux)
with absorption and U0(r, t) @J0(r, t)# is the photon den-
sity (photon flux) satisfying Eq. (4) without absorption
(ma 5 0). When these transformations [Eqs. (6) and (7)]
are inserted into the traditional diffusion equation [Eq.
(4)], we obtain the following equation for U0(r, t):

¹2U0~r, t ! 2
1

Dma

]U0~r, t !

]t
5 0. (8)

Notice that U0(r, t) depends on the sample absorption;
the independence of the absorption and scattering parts
of the solution is unrealized, i.e., the general transforma-
tion property is no longer valid.

Now let us review the derivation of the diffusion equa-
tion [Eq. (4)] from the transport equation [Eq. (1)] to gain
a better understanding of the approximations that led to
the breakdown of this transformation property. We start
with the following coupled differential equations:

]
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(9)
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(10)

These equations are obtained from the transport equa-
tion [Eq. (1)] by expanding the radiance and the source
term,13,27 i.e.,

L~r, V̂, t ! 5
v

4p
U~r, t ! 1

3
4p

J~r, t ! • V̂, (11)

S~r, V̂, t ! 5
1

4p
S0~r, t ! 1

3
4p

S1~r, t ! • V̂. (12)

The expansions are substituted into Eq. (1). Integrating
Eq. (1) over V̂, we obtain Eq. (9). Multiplying Eq. (1) by
V̂ and integrating over V̂, we obtain Eq. (10). This is
equivalent to the so-called P1 approximation of the trans-
port equation.12,13,15

At this point it is straightforward to show that the
transformations still hold for Eqs. (9) and (10) for a homo-
geneous, turbid medium. The substitution of the trans-
formation equations (6) and (7) into Eqs. (9) and (10)
yields coupled equations for U0(r, t) and J0(r, t) that are
still independent of absorption, i.e.,

]

]t
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The next step in the derivation of the diffusion equa-
tion is to decouple Eqs. (9) and (10). This is done by
using the following substeps: (1) Solve Eq. (9) for
¹ • J(r, t), (2) then take the divergence of Eq. (10), and
finally (3) substitute ¹ • J(r, t) from Eq. (9) into
Eq. (10). These substeps produce the telegrapher’s equa-
tion for U(r, t) (Ref. 28):

2Dma
¹2U~r, t ! 1 vmaU~r, t ! 1

]U~r, t !

]t
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3Dma
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]t
1

1

v

]2U~r, t !

]t2 G
5 S0~r, t ! 1
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v2

]S0
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2

3Dma

v
¹ • S1~r, t !. (15)

Inserting the separable form for U [transformation equa-
tion (6)] into Eq. (15) and canceling terms, we arrive at an
equation for U0(r, t) that is still independent of absorp-
tion:

2¹2U0~r, t ! 1
3ms8

v

]U0~r, t !

]t
1

3

v2

]2U~r, t !

]t2 5 0.

(16)

Equation (15) is not yet the photon diffusion equation,
and the transformation property is still valid. It is inter-
esting to note that for the static case (i.e., no time depen-
dence), the telegrapher’s equation [Eq. (15)] reduces to a
time-independent diffusion equation with D 5 Dma

; how-
ever, we will show in Section 3 that this is inconsistent
with Monte Carlo results, even for the time-independent
case (see Fig. 6 below).

The final step in the derivation of the diffusion equa-
tion requires some assumptions in order to drop the un-
derlined terms in Eq. (15).4,27 The dipole source term
S1(r, t) is dropped by assuming an isotropic source; this
is justified, since collimated sources can be treated as iso-
tropic sources displaced one transport mean free path into
the scattering medium from the collimated source. The
condition for dropping the remaining terms is most easily
understood in the frequency domain. Here the time de-
pendence of the source and the photon density is
exp(2iwt), and the time derivatives can be replaced by
2iw. The remaining underlined terms are then negli-
gible when4,27

3wD ! v2 ⇒ w/ms8v ! 1. (17)

In essence, the photon scattering frequency must be much
larger than the source modulation frequency. Further-
more, the albedo should be close to unity for the diffusion
approximation to be valid, that is,

ms8/~ms8 1 ma! ' 1, (18)

or

ma /~ms8 1 ma! ! 1. (19)

Thus we are left with Eq. (4). We can no longer sepa-
rate the absorption and scattering effects [Eqs. (6) and
(7)] by using this time-dependent diffusion equation.
The transformation property of the transport equation
has now been lost! There is no clear physical reason evi-
dent from the derivation alone that reveals why these
transformations should be lost.

We note, however, that there is an inconsistency in this
traditional derivation. When terms of order ma /(ms8
1 ma) ! 1 [relation (19)] are dropped, then, for the
nearly isotropic case (which is a requirement of P1 expan-
sion), ma ! ms8 and terms of order ma /ms8 should also be
dropped; hence

D0 5 v/3ms8 . (20)

This has been discussed in detail by Furutsu and
Yamada18 and Furutsu.19 The new diffusion coefficient
[Eq. (20)] preserves the transformation (6) for the time-
dependent diffusion equation (4).26 We also note that
this new result is in agreement with derivations based on
the continuum limit of the lattice random-walk theory by
Gandjbakche and Weiss.29

This is the status of the current controversy in the lit-
erature. Rather than considering further the details of
the theoretical derivations of the diffusion coefficient, we
present Monte Carlo results that exhibit substantially
better agreement with diffusion theory when an
absorption-independent diffusion coefficient [D 5 D0 ;
Eq. (20)] is used. The absorption-independent diffusion
coefficient thus makes possible characterization of the op-
tical properties of homogeneous media.

3. MONTE CARLO SIMULATIONS
In our Monte Carlo simulations we placed an isotropic
photon source at the origin. Concentric spherical detec-
tors were placed around the origin at intervals of 0.2 cm.
For each scattering event, a check is made to see if the
photon has crossed a detector. If the photon has crossed
a spherical shell in the radially outward direction, then
the outward flux for that detector at that time is scored.
If the crossing was in the inward direction, then the same
is done for the inward flux. Photon flux inward and pho-
ton flux outward are thus recorded for each detector as a
function of time. Figure 1 shows a simple two-
dimensional sketch of the setup.

Analytical equations for the diffusion approximation
for the inward and outward components of the flux
are13,14,17

J2 5
v
4

U~r, t ! 1
D
2

]U~r, t !

]r
,

J1 5
v
4

U~r, t ! 2
D
2

]U~r, t !

]r
, (21)

where J2 and J1 are the radially inward and outward
components of the flux, respectively.

Photons are propagated through the medium by using
appropriate optical properties and phase functions.30–32

The Henyey–Greenstein phase function gives the cosine
of the scattering angle as

cos u 5
1

2g F1 1 g2 2 S 1 2 g2

1 2 g 1 2gz D 2G , (22)
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where u is the scattering angle and z is a random number
between 0 and 1. The scattering angle in turn gives the
direction cosines for the photon. Photons undergo two
different interactions: absorption and scattering events.
Random numbers are used to give scattering and absorp-
tion distances, which are in turn used to decide which
event the photon experiences. The photon is then propa-
gated by using the direction cosines and these interaction
distances. The details of the process may be found from
the Monte Carlo code, which is available on request from
the authors, and is similar to previous approaches as
documented in the literature.27,31,32 This process is re-
peated for each photon until the photon is either absorbed
or travels a fixed (large) distance away from the source,
which is introduced to limit the simulation time while
still being compatible with our assumption of an infinite
medium.

The program thus calculates the partial photon flux for
each detector and then records the photon density as14

U~r, t ! 5 2~J2 1 J 1 !/vADt, (23)

where A is the detector surface area 4pd2 (d is the
source–detector separation), v is the speed of light in that
medium, and Dt 5 20 3 10212 s is the width of the time
channel. The photon density is normalized by dividing it
by the detector surface area and the width of the time
bins. The results are saved in a text file and analyzed by
using photon migration imaging software for comparisons
with diffusion theory.33

Fig. 1. Simple two-dimensional sketch of the Monte Carlo ap-
proach used in counting and propagating photons. Photons are
emitted at the origin from an isotropic source. The thick solid
curve indicates the path of a single photon that crosses the con-
centric spherical detectors (indicated by dashed circles) several
times. When the photon crosses the detectors (at points A), the
events are scored. This gives us the inward and outward flux at
each detector. The shown photon is absorbed at the point B.
Further details are explained in the text, and the Monte Carlo
code is available upon request from the authors.
4. RESULTS AND DISCUSSION
Photon density at time t and distance r from the source
provides an elegant way to examine the absorption depen-
dence of the photon diffusion coefficient D. For an infi-
nite medium, the solution of the photon diffusion equa-
tion [Eq. (4)] is1,34

U~r, t ! 5 ~4pDt !23/2 exp~2r2/4Dt 2 mavt !. (24)

If we consider two measurements of U(r, t) for the same
geometry, source–detector position, ms8 , and g, but for dif-
ferent ma , then

lnFU1~r, t !

U2~r, t !
G 5

r2

4t S 1

D2 2
1

D1
D 1 ~ma,1 2 ma,2!vt

1 lnF S D2

D1
D 3/2G , (25)

where the subscripts 1 and 2 distinguish between the two
different media. If D 5 Dma

[Eq. (5)], a plot of Eq. (25) is
curved at early time. If D 5 D0 [Eq. (20)], a plot of Eq.
(25) is linear all the time. Figure 2 illustrates this point
for the two different diffusion coefficients; the dotted
curves indicate the result with D 5 Dma

, and the solid
line indicates the D 5 D0 result.

Applying the same analysis to the photon density ob-
tained from the Monte Carlo results, we see that the
Monte Carlo simulations indicate clearly that D 5 D0 as
in Eq. (20). Figure 3 shows the Monte Carlo results for
ma,2 5 0.05, 0.1, and 0.5 cm21 compared with those for
ma,1 5 0.005 cm21, with a source–detector separation of
1 cm. In all three cases, the plots are straight lines.

Fig. 2. ln@U1(r, t)/U2(r, t)# is plotted for D 5 D0 (solid line)
and for D 5 Dma

(dotted curves). Here ma 5 0 cm21 for
U0(r, t), and ma 5 0.05 cm21 for U(r, t). Two different
source–detector separations, 2 cm and 3 cm, are shown. As ex-
plained in the text, the plots for D 5 Dma

are curved and depen-
dent on the source–detector separation, whereas for D 5 D0 the
plots are straight and are not dependent on source–detector
separation. ms8 5 10 cm21 for all cases.
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Lines have also been observed for other source–detector
separations and scattering and absorption coefficients.

We next investigate the quantitative agreement be-
tween the Monte Carlo results and photon diffusion
theory by using both D 5 Dma

and D 5 D0 in the theory.
Fourier-transforming the time domain data into the fre-
quency domain, we compare Monte Carlo results with dif-
fusion theory for various modulation frequencies and
source–detector separations. We plot the photon density
obtained from Monte Carlo simulations and theory re-
sults and compare them by looking at the fractional re-
siduals in amplitude, i.e., Amp(Monte Carlo)/
Amp(theory). The analysis of the phase residuals does
not convey significant quantitative information. In
simulating the time evolution of the photons in our Monte
Carlo code, we used time bins that were 20 ps wide, i.e., a
photon that crossed a detector at 30 ps is recorded to have
crossed the detector at the same time as another one that
has crossed it at 35 ps. Each time bin contains a tempo-
ral average of detected photons, which perturbs the phase
in the frequency domain by an unknown amount that in-
creases with increasing frequency. To avoid this incon-
sistency, we matched the timings by using a free param-
eter t0 in the fitting algorithm. This fitting could be
avoided in the future by running simulations with
smaller time bins, which would require a higher number
of photons to get a good signal, or else by quantifying the
averaging effect that is due to the temporal bins in a way
similar to that of Wang et al.32 Here t0 is the time at
which the laser pulse was introduced into the turbid me-
dium. If the time bins were infinitely small, then t0
would equal 0. Roughly speaking, t0 will be one half of
the time bin width.

Fig. 3. ln@U0(r, t)/U(r, t)# is plotted for Monte Carlo results.
Here U0(r, t) is for ma 5 0.005 cm21, and U(r, t) has ma5 0.05,
0.1, and 0.5 cm21, as indicated in the figure. As expected from
the theoretical argument for the diffusion coefficient being D
5 D0 , Monte Carlo results produced the expected lines. This
clearly indicates that Monte Carlo simulations are indicative of
D 5 D0 . ms8 5 10 cm21, and source–detector separation is 1 cm
for all cases shown.
The plots in Fig. 4 show the modulation frequency de-
pendence of the fractional amplitude residuals for an in-
finite, homogeneous medium with ms8 5 10 cm21 and
source–detector separation of 1 cm for ma 5 0.05, 0.1, 0.5,
and 1.0 cm21. Figure 4(a) plots the residuals for diffu-
sion theory with the use of D 5 Dma

. We see that the
agreement between diffusion theory and Monte Carlo re-
sults becomes worse with increasing absorption coeffi-
cient. Comparing Fig. 4(a) with Fig. 4(b), where D
5 D0 , we see that the residuals are substantially
smaller for the latter case.

From Fig. 4 we see that when D 5 Dma
, the diffusion

theory underestimates the amplitude, whereas, when D
5 D0 , diffusion theory overestimates the amplitude.
These differences between theory and experiment result
from the diffusion approximation. However, the ob-
served trend suggests that the diffusion approximation
can be modified by choosing a diffusion coefficient (D)
that has a ma dependence but with different weights for
the absorption and scattering coefficients. The residuals
are flat for all frequencies; therefore they can be corrected
by weighting the absorption coefficient, i.e., D 5 v/3(ms8
1 kma) (where k is a scalar coefficient). Figure 4(a)
shows that when D 5 Dma

, the diffusion approximation is
underestimating the amplitude, and from Fig. 4(b) we see
that the diffusion approximation overestimates the am-
plitude when D 5 D0 . This suggests that with k , 1
the diffusion approximation can be corrected to match the
Monte Carlo results better. However, as we see in Fig. 5,
the dependence of the residuals on source–detector sepa-
ration indicates that a distance-dependent correction is
required, and this correction is smaller at large separa-
tions when k 5 0. Such a correction is also inconsistent
with the notion that D should be a property of the me-
dium; i.e., it should not be a function of the source–
detector separation.

The plots in Fig. 5 show the dependence of the frac-
tional amplitude residuals on the source–detector separa-
tion for an infinite, homogeneous medium with ms8
5 10 cm21 and modulation frequency of 200 MHz for ma
5 0.05, 0.5, and 1.0 cm21. Solid curves indicate D
5 D0 , and dotted curves indicate D 5 Dma

. It can be
seen from these plots that the agreement between diffu-
sion theory and Monte Carlo simulations gets worse with
increasing absorption coefficient, as expected. When D
5 Dma

, amplitude residuals increase quickly with larger
source–detector separations when ma /ms8 . 1/20. For ex-
ample, looking at the case with ma 5 1 cm21, we can see
an error that jumps to more than 20% after 1 cm when
D 5 Dma

, in comparison with errors that are always less
than 10% for D 5 D0 . These plots also indicate the
breakdown of the diffusion theory near the source. The
residuals are not flat anymore, indicating that the photon
diffusion coefficient is not a function of absorption, and
the correction discussed above is not allowed.

We now consider the effect that the form of the photon
diffusion coefficient will have on our ability to character-
ize accurately the optical properties of turbid media. To
this end we have used a least-squares-fitting algorithm to
fit for the optical properties obtained by two different
methods. We first fit data from a given source–detector
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Fig. 4. Fractional amplitude residuals [Amp(Monte Carlo)/Amp(Theory)] versus modulation frequency is shown for different infinite,
homogeneous media: (a) results for D 5 Dma

, (b) results for D 5 D0 . ms8 5 10 cm21, and source–detector separation is 1 cm for all
cases shown. Media with ma 5 0.05, 0.1, 0.5, and 1.0 cm21 are shown as indicated in the figure. Comparison of (a) and (b) shows that
the agreement is much better when D 5 D0 , which also allows for the possibility of weighting the absorption coefficient, as discussed in
the text.

Fig. 5. Fractional amplitude residuals [Amp(Monte Carlo)/Amp(Theory)] versus source–detector separation is shown for different infi-
nite homogeneous media. Solid (dotted) curves indicate results for D 5 D0 (D 5 Dma

). ms8 5 10 cm21, and modulation
frequency 5 200 MHz for all cases. ma 5 0.05, 0.5, and 1.0 cm21 in (a), (b), and (c), respectively. Fractional amplitude residuals are
expected to be approximately 1.0 for good agreement. Comparison of the dotted and solid curves show that D 5 D0 provides much
better agreement, as discussed in the text.
separation as a function of modulation frequency. We
next fit data for a given modulation frequency over a
range of source–detector separations, which is shown in
Fig. 6.

When fitting data from a range of modulation frequen-
cies at a given source–detector separation, we see that the
reduced scattering coefficient is characterized more accu-
rately when D 5 D0 . However, the absorption coeffi-
cient is determined with approximately the same accu-
racy with either D0 or Dma

. This behavior is expected.
When fitting data that cover a range of modulation fre-
quencies, one is essentially performing an analysis in the
time domain. In the time domain,1 the absorption coeffi-
cient is determined at long times, where the decay of the
photon density is dominated by exp(2vmat). The deter-
mination of ma is thus independent of D. Furthermore,
the determination of the reduced scattering coefficient us-
ing the two different D ’s differs by the value of ma , and
D 5 D0 is more accurate. Here the fitting is accom-
plished by minimizing the x2 value over the range of
modulation frequencies for each source–detector separa-
tion. We fit simultaneously for the initial amplitude of
the source S0(r, t) in Eq. (4), to cancel the systematic er-
rors that are observed in Figs. 4 and 5, and for the initial
time for the injection of the pulse of light, to cancel sys-
tematic errors that are due to temporal binning as ex-
plained previously. Both ms8 and ma are also simulta-
neously fitted for.

When we fit data from a range of source–detector sepa-
rations for a given frequency (Fig. 6), we see that the
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Fig. 6. ms fitting results through a range of source–detector separations (1 cm to 2 cm) versus modulation frequency is shown for dif-
ferent absorption coefficients. Both ms8 and ma are fitted simultaneously at each modulation frequency, except for w 5 0 (i.e., dc case).
In the latter case, ma is assumed to be known, and we fit for ms8 . Solid (dotted) lines indicate results for D 5 D0 (D 5 Dma

). ms8

5 10 cm21; ma 5 0.05 and 1.0 cm21 in (a) and (b), respectively. Dashed lines are used to indicate the expected ms . We see that for
ma 5 0.5 and 1.0 cm21 the accuracy for D 5 D0 is within 2%, whereas when D 5 Dma

, the discrepancy is as large as more than 10%.
We also note that, even for the time-independent case, D 5 D0 gives better accuracy. For low ma values investigated, such as ma5 0.05
and 0.1 cm21, we obtain results accurate within 1%, which is under the expected noise level. The discrepancies and the comparison of
the results for two different D ’s are not significant. Here, once again, the details of D do not play a role, and hence the plots for the ma
fits are not shown here. The details are discussed in the text.
breakdown of the diffusion approximation near sources
plays a role in the comparison of the fit results from two
different D ’s. We overcome this problem by choosing a
fitting range from 1 cm to 2 cm, where the diffusion
theory breakdown region is avoided. Both ms8 and ma are
fitted simultaneously at each modulation frequency ex-
cept for w 5 0 (i.e., dc case). In the latter case, ma is as-
sumed to be known, and we fit for ms8 . For low ma , i.e.,
ma < 0.1 cm21, we obtain fits for ms8 accurate to within 1%
by using both D0 and Dma

. In Fig. 6 we see that for ma

> 0.5 cm21 the accuracy for D 5 D0 is better than that
for D 5 Dma

(i.e., ,2% versus .10%). Thus we also note
that even for the time-independent case we find that D
5 D0 gives better accuracy. When we fitted for ma , the
form of D did not change the fitting accuracy, as expected.

The data shown in the figures are results from simula-
tions with anisotropy constant g 5 0. However, they de-
scribe different values of g equally well. In our simula-
tions, anisotropy constants of 0.001, 0.2, 0.5, and 0.9 all
produced similar results.

5. SUMMARY
We have confirmed that diffusion theory is accurate for
infinite, homogeneous, turbid media in describing the na-
ture of the propagation of photons. However, the tradi-
tionally accepted photon diffusion coefficient is shown to
be a poor approximation by comparison with (the analyti-
cally derived) D0 5 v/3ms8 . The discrepancy between
Monte Carlo results and diffusion theory is found to be
within 5% for absorption-independent D 5 D0 , whereas
it is as high as 15%–20% when D 5 Dma

is absorption de-
pendent for ma < 0.1ms8 . This is important for optical
spectroscopy, where the accurate description of photon
propagation in turbid media is necessary for obtaining
quantitative results. A comparison of the accuracy of fit-
ting for the optical properties of infinite, homogeneous,
turbid media is made between two forms of the diffusion
coefficient. Good accuracy of within 10% is observed in
both cases, with absorption-independent D 5 D0 giving
better agreement (within 2%), whereas absorption-
dependent D 5 Dma

is accurate only within 10% for ma

< 0.1ms8 .

Note added in proof: After submission of this paper
we learned of other papers focusing on related issues and
arriving at similar conclusions. These papers are by Bas-
sani et al.35 and Nishimura et al.36
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