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Reduced Sleep Spindles in Schizophrenia:
A Treatable Endophenotype That Links Risk
Genes to Impaired Cognition?
Dara S. Manoach, Jen Q. Pan, Shaun M. Purcell, and Robert Stickgold
ABSTRACT
Although schizophrenia (SZ) is defined by waking phenomena, abnormal sleep is a common feature. In
particular, there is accumulating evidence of a sleep spindle deficit. Sleep spindles, a defining thalamocortical
oscillation of non–rapid eye movement stage 2 sleep, correlate with IQ and are thought to promote long-term
potentiation and enhance memory consolidation. We review evidence that reduced spindle activity in SZ is an
endophenotype that impairs sleep-dependent memory consolidation, contributes to symptoms, and is a novel
treatment biomarker. Studies showing that spindles can be pharmacologically enhanced in SZ and that
increasing spindles improves memory in healthy individuals suggest that treating spindle deficits in patients
with SZ may improve cognition. Spindle activity is highly heritable, and recent large-scale genome-wide
association studies have identified SZ risk genes that may contribute to spindle deficits and illuminate their
mechanisms. For example, the SZ risk gene CACNA1I encodes a calcium channel that is abundantly expressed
in the thalamic spindle generator and plays a critical role in spindle activity based on a mouse knockout. Future
genetic studies of animals and humans can delineate the role of this and other genes in spindles. Such cross-
disciplinary research, by forging empirical links in causal chains from risk genes to proteins and cellular
functions to endophenotypes, cognitive impairments, symptoms, and diagnosis, has the potential to advance
the mechanistic understanding, treatment, and prevention of SZ. This review highlights the importance of
deficient sleep-dependent memory consolidation among the cognitive deficits of SZ and implicates reduced
sleep spindles as a potentially treatable mechanism.
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Neuropsychiatric disorders are primarily defined by waking
phenomena, but sleep disturbances are often a prominent
feature. Although usually viewed as secondary, sleep depri-
vation can precipitate psychosis (1) and trigger or aggravate a
range of neuropsychiatric conditions (2–6). Moreover, as has
been shown in depression (7) and attention-deficit/hyperac-
tivity disorder (4), treating sleep disturbances can improve
symptoms and cognitive function. These findings suggest that
abnormal sleep is not merely epiphenomenal but can directly
contribute to the defining features of neuropsychiatric disor-
ders. In schizophrenia (SZ), there is a specific deficit in sleep
spindles, a defining thalamocortical oscillation of stage 2 non–
rapid eye movement (NREM) sleep (N2). In this review, we
describe the nature, correlates, and implications of this spindle
deficit and place it in a hypothetical causal chain that links SZ
risk genes to cognitive deficits and positive symptoms.
Understanding the neural and genetic bases of spindle
deficits can advance the mechanistic understanding and
treatment of SZ.
N: 0006-3223

SEE COMMENTA
ABNORMAL SLEEP IS A KEY FEATURE OF SZ AND
POTENTIAL TARGET FOR TREATMENT

In SZ, sleep disturbances have been described since Kraepe-
lin’s work (8) and are associated with poorer coping skills and
diminished quality of life (9,10). They are common in patients
throughout the course of SZ (11), in individuals with prodromal
symptoms (12,13), and in young relatives (14). Sleep distur-
bances are associated with the initial onset of psychosis and
predict relapse in remitted patients (15,16). Findings of sleep
disturbances in unmedicated and antipsychotic drug (APD)-
naïve patients with SZ (17) indicate that disturbed sleep is not
merely a medication side effect. In fact, APDs often normalize
sleep (18), and withdrawal is associated with a progressive
deterioration of sleep quality (19), which, in turn, is associated
with relapse (16) and increased positive symptoms (20).
Despite the clear association of disturbed sleep with SZ, the
exact nature of the disturbance and its relation to pathophysi-
ology, cognitive deficits, and symptoms are unclear. If specific
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sleep abnormalities that contribute to the onset, relapse, and
manifestations of SZ can be identified, they may serve as
targets for intervention to prevent the emergence of SZ,
remediate its course, and ameliorate core features.

We review evidence that a specific sleep abnormality—
reduced sleep spindle activity—predates the onset of SZ, is
present throughout its course, and contributes to cognitive
deficits and symptoms. This evidence indicates that 1) indi-
viduals with SZ and their first-degree relatives have reduced
sleep spindle activity, 2) spindle deficits are associated with
impaired memory consolidation and positive symptoms, 3) SZ
risk genes are associated with spindle deficits and implicate
specific pathophysiologic mechanisms, 4) spindles can be
enhanced, and 5) spindles may serve as a novel treatment
biomarker associated with cognition.
SLEEP ABNORMALITIES IN SZ

The most common subjective sleep disturbances in SZ are
difficulty initiating and maintaining sleep (i.e., insomnia)
(15,17). Polysomnography studies variably show reduced
sleep efficiency (the fraction of time in bed spent asleep),
increased sleep onset latencies, and increased wake time after
sleep onset in patients with SZ compared with healthy
individuals (17,21). Studies also reported altered circadian
rhythms (22) and increased rates of sleep disorders, including
obstructive sleep apnea, movement disorders, parasomnias,
and hypersomnolence (6,15).

Polysomnography studies document diverse abnormalities
of sleep architecture (i.e., the distribution of time spent in
different sleep stages) in patients with SZ. In humans, sleep is
divided into rapid eye movement (REM) and NREM sleep, and
NREM sleep is subdivided into three stages: N1–N3 (Figure 1)
(23). N3, or slow-wave sleep, is characterized by large delta
(.5–4 Hz) waves. Medicated and APD-naïve patients with SZ
and first-degree relatives show N3 abnormalities including
reduced duration and delta power (24–27). Abnormalities in
REM sleep, usually decreased REM latency or increased REM
density (REMs per minute), are also reported (25,26,28), but
neither N3 nor REM abnormalities are consistently observed
(28,29), and meta-analyses have not revealed systematic
differences in patients with SZ compared with healthy or
psychiatric control subjects (17,21).

Relatively few studies of SZ venture beyond architecture
to examine the spectral characteristics of the sleep
Figure 1. Normal sleep architecture. A normal night’s sleep consists of
five 90-min cycles that include rapid eye movement (REM) sleep (thicker
black line). Most of the deep slow-wave sleep (N3) occurs early in the night,
and most REM sleep occurs later in the night. N1 is a transitional state from
wake to sleep, characterized by the disappearance of 8–12 Hz (alpha)
waves from the electroencephalogram and appearance of slow (..5 sec)
oscillating eye movements (23). N2 is defined by the presence of isolated
sharp negative waves followed by a positive component, lasting ..5 sec,
and sleep spindles. N3 is defined by the presence of large (.75 μV peak-to-
peak), slow (.5–2 Hz) waves occupying at least 20% of each 30-sec epoch.
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electroencephalogram (EEG). Recently, a fairly consistent liter-
ature has emerged showing a specific deficit in sleep spindle
activity. Sleep spindles, a defining EEG oscillation of N2, are
brief (�1 sec) powerful bursts of 12–15 Hz activity organized in
a waxing/waning envelope. Spindles also occur during N3 but
are less dense (30). Most studies reviewed used N2 spindle
density (number of spindles per minute) as the primary measure-
ment, but the amplitude, duration, peak frequency, and sigma
power (usually 12–15 Hz) of spindles are often reported, as are
more general measures of NREM EEG sigma power, which
correlate with spindle density (31). When summarizing the
findings of multiple studies using different measures of spindles,
we use the generic term “spindle activity.”
SPINDLE MECHANISMS

There is considerable cross-species knowledge about sleep
spindle mechanisms. Spindles are generated in the thalamic
reticular nucleus (TRN) (32), a thin net-like structure around the
thalamus comprised entirely of gamma-aminobutyric acid
(GABA)-ergic neurons (33). TRN neurons project to glutamatergic
thalamic neurons that project to the cortex. Cortical neurons
send glutamatergic inputs back to N-methyl-D-aspartate (NMDA)
receptors on TRN neurons (Figure 2). Thus, spindles are the
product of a thalamocortical feedback loop that is regulated
by GABAergic and NMDA receptor–mediated glutamatergic
neurotransmission (34). Although the TRN can generate spindles
in isolation (35,36), feedback from the cortex is necessary to
synchronize spindles across cortical regions (30,37).

The voltage-dependent firing properties of TRN neurons are
well described (38). Like most neurons, TRN cells fire in “tonic”
mode at resting membrane potential, when most low-
threshold Ca21 channels are inactivated. However, when
TRN neurons are relatively hyperpolarized to approximately
270 mV, these channels are de-inactivated, and the neurons
fire in “burst” mode. During burst mode, a depolarizing input
opens T-type Ca21 channels, leading to low-threshold Ca21

spikes and rhythmic bursts of action potentials. Rhythmic
bursting in TRN neurons produces a powerful and prolonged
inhibition followed by rebound spike-bursts in thalamocortical
relay neurons that entrain cortical neurons to oscillate at
spindle frequency (39). Dysfunction in spindle-generating
circuitry is consistent with current models of SZ that implicate
thalamocortical circuitry and GABAergic and NMDA receptor–
mediated glutamatergic neurotransmission (40) and with
evidence of TRN abnormalities in SZ (41).
SLEEP SPINDLES MEDIATE MEMORY
CONSOLIDATION

After encoding, memories undergo “consolidation” processes
that stabilize, enhance, integrate, and reorganize memory
traces in the brain. These processes operate outside of
conscious awareness while awake and during sleep. A wealth
of molecular cellular, neural network, brain activation, and
behavioral data from birds (42), rodents (43), cats (44), and
humans (45) suggest an evolutionarily conserved function for
sleep in the consolidation of multiple forms of memory.

Animal studies suggest that spindles are a key facilitator of
the synaptic plasticity involved in memory. Experimental
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Figure 2. Thalamic reticular nucleus (TRN) circuitry for generating and
synchronizing sleep spindles. The TRN, a net-like nucleus that sits between
the rest of the thalamus and the neocortex, modulates thalamocortical
activity. The TRN receives projections from thalamocortical and corticotha-
lamic neurons. GABAergic TRN neurons project to thalamocortical relay
neurons. Glutamatergic corticothalamic neurons send projections back to
the TRN and other thalamic nuclei. GABA, gamma-aminobutyric acid; GLU,
glutamate; th, thalamus. [Adapted with permission from Pinault (103).]

Figure 3. The coordination of sleep spindles with hippocampal ripples and
neocortical slow oscillations in the service of consolidating new memories
during sleep. During non–rapid eye movement sleep, neocortical slow
oscillations drive the reactivation of hippocampal memory representations
during sharp wave ripples (green) in the hippocampus together with spindles
(blue) in the thalamic reticular nucleus (TRN). Hippocampal ripples nest in the
troughs of spindles, which occur during the up states of slow oscillations.
This dialogue between slow oscillations, spindles, and hippocampal ripples is
thought to mediate the transfer of selected new memories from temporary
dependence on the hippocampus to longer term representation in the
neocortex (43). [Adapted with permission from Born and Wilhelm (150).]
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models suggest that spindles induce massive influxes of
calcium ions into cortical pyramidal cells (46), where they
would be expected to trigger known intracellular calcium-
dependent mechanisms that produce synaptic plasticity (47).
Trains of stimuli applied to rat cortical pyramidal cells that
mimic the neuronal firing patterns that accompany spindles
have been shown to induce an NMDA receptor–dependent
short-term potentiation and L-type Ca21 channel–dependent
long-term potentiation (48).

In humans, spindles correlate with the sleep-dependent
consolidation of procedural (49–54) and declarative (55–57)
memory. In addition, EEG (50,55), magnetoencephalography
(58), and subdural electrode grid (59) studies show increased
spindle activity in specific circuits that were involved in
presleep learning and that these learning-induced spindles
predict sleep-dependent memory consolidation (50,55,58–60).
Together, these findings suggest that spindles strengthen
synapses to consolidate memory during sleep. There is also
mounting evidence of a more general role for spindles in
cognition based on their correlations with learning ability and
IQ (61–63), relationships that may be mediated by memory
enhancement.

Spindles act in concert with other NREM oscillations. They
are temporally correlated with neocortical slow oscillations
(.5–1 Hz) and hippocampal ripples (�200 Hz transient bursts
of CA1 pyramidal cell activity), an orchestration that is thought
to redistribute recently encoded memories from temporary dep-
endence on the hippocampus to longer term representation in
the cortex (Figure 3) (43,64,65). In humans, hippocampal ripples
are difficult to measure noninvasively, but simultaneous EEG
and functional magnetic resonance imaging during sleep show
that spindles are associated with increased functional connec-
tivity between the hippocampus and neocortex (66). Evidence
of a breakdown of this coordination is seen in a rat model of SZ
(67). In SZ, there is reduced spindle coherence across the
cortex (31). This reduced spindle coherence may reflect
reduced modulation by slow oscillations, which are thought to
synchronize spindles across the cortex in the service of
memory consolidation (64,68).
SLEEP SPINDLE DEFICIT IN SZ

Three early studies of small samples (n # 11) of APD-naïve
patients with a first episode of SZ (25,69) and unmedicated
patients with SZ (70,71) did not find a spindle deficit (Table 1).
However, a growing literature has reported marked reductions
of spindle activity in medicated patients with chronic SZ
(31,72–76) and medicated adolescents with early-onset SZ
spectrum disorder (77). With the exception of increased sleep
onset latency in two studies (74,75), the spindle deficit
occurred in the context of normal sleep architecture and
quality (e.g., efficiency, wake time after sleep onset), indicating
that it is not secondary to sleep disruption. This contrast with
reports of disrupted sleep in SZ (reviewed earlier) may reflect
that sleep disruption primarily characterizes more acute
phases of SZ and that APDs are sedating and tend to
normalize sleep architecture (18). The effects of long-term
APD treatment on spindles are unknown, but a single dose of
olanzapine in SZ reduced spindle density (78), and acute
administration of haloperidol to healthy participants did not
affect spindle density (79).

A recent report extended the finding of reduced spindle
density to APD-naïve patients with early-course SZ (but not to
APD-naïve patients with a non-SZ psychotic disorder). A trend
Biological Psychiatry ]]], 2015; ]:]]]–]]] www.sobp.org/journal 3
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Table 1. Studies of Spindle Density in Schizophrenia

Study
Medication

Status
Patients

(n)
Healthy Control
Subjects (n) Sleep Stage

Spindle Detection
Method Finding

Hiatt et al., 1985 (71) Unmedicated 5 5 Sampled from midpoints of
NREM periods

Visual Increased in NREM
period 1

Van Cauter et al.,1991 (70) Unmedicated 6 6 First NREM period Visual No difference

Poulin et al., 2003 (25); Forest
et al., 2007 (69)a

APD-naïve 11 11 N2 Visual No difference

Ferrarelli et al., 2007 (74)b Medicated 18 17 NREM during first sleep
episode

Algorithm Reduced

Ferrarelli et al., 2010 (75)b Medicated 49 44 NREM Algorithm Reduced

Manoach et al., 2010 (73) Medicated 14 15 N2 Algorithm Reduced

Seeck-Hirschner et al., 2011 (76) Medicated 20 22 N2 during a nap Visual Reduced

Wamsley et al., 2012 (31) Medicated 21 17 N2 Algorithm Reduced

Manoach et al., 2014 (80)c APD-naïve 15 25 N2 Algorithm Reduced

Goder et al., 2015 (72) Medicated 16 16 N2 Algorithm and
visual

Reduced

Tesler et al., 2015 (77)d Medicated 9 15 First hour of NREM Algorithm Reduced

APD, antipsychotic drug; NREM, non–rapid eye movement.
aThe 8 patients reported in the study by Forest et al. are a subset of the 11 patients reported in the study by Poulin et al.
bMeasures included spindle number and integrated spindle activity (calculated by integrating the absolute amplitude values of each spindle

detected at every electrode, divided by the non-REM sleep duration) rather than density. Included psychiatric control groups whose integrated
spindle activity was greater than patients with schizophrenia but did not differ from healthy control subjects.

cIncluded an APD-naïve nonschizophrenia psychotic control group (n 5 11) whose spindle density was greater than patients with schizophrenia
at a trend level and did not differ from healthy control subjects.

dAdolescents with early-onset schizophrenia spectrum disorder.
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to reduced density and significantly reduced spindle amplitude
was also seen in young (mean age, 14) nonpsychotic first-
degree relatives of patients with SZ (80). These findings make
it unlikely that the spindle deficit in SZ is due to APDs and
suggest the possibility of diagnostic specificity, although
replication in larger samples is necessary. Two other studies
reported spindle deficits in SZ but not in a mixed psychiatric
control group taking APDs (75) or in individuals with a history
of depression (74), consistent with another report of normal
spindles in depression (81). However, there are reports of
various spindle abnormalities in other neurodevelopmental and
neurodegenerative disorders characterized by cognitive
impairment, including mental retardation (82), phenylketonuria
(83), Williams’ syndrome (84), autism (85,86), and Parkinson’s
disease with dementia (87). Whether the spindle deficits of SZ
have unique characteristics and consequences remains to be
determined.

Findings of spindle deficits throughout the course of SZ and
in first-degree relatives implicate abnormal function of thala-
mocortical circuitry that may begin before the onset of SZ,
consistent with the finding of reduced thalamic volume in
adolescents at ultra-high risk for psychosis that correlates with
sleep disturbance (12). This literature indicates that reduced
spindle activity is unlikely to be secondary to APDs or
chronicity and instead may be an endophenotype (a trait
indicating genetic vulnerability) (88) of SZ.

REDUCED SPINDLES ARE ASSOCIATED WITH
IMPAIRED COGNITION AND POSITIVE SYMPTOMS IN
SZ

Although sleep is critical for memory, disrupted sleep impairs
memory (89–91), and SZ is characterized by both abnormal
4 Biological Psychiatry ]]], 2015; ]:]]]–]]] www.sobp.org/journal
sleep and impaired memory, few studies have examined the
connection. Emerging evidence suggests that reduced sleep
spindles contribute to procedural and declarative memory
impairments in SZ.

Using a well-validated probe of sleep-dependent motor
procedural memory, the finger-tapping motor sequence task
(Figure 4) (49,92), several studies demonstrated deficient
sleep-dependent enhancement of motor learning in SZ. In
healthy individuals, significant performance improvements
occur after sleep but not while awake (49,93–95) and correlate
with N2 duration (49) and spindle density (50,96,97). In
contrast, medicated patients with chronic SZ fail to show
significant sleep-dependent improvement despite normal
learning during training (31,73,98–100), and this failure corre-
lated with sleep spindle density in one study (31) but not in two
others (73,100). Patients with SZ also show reduced sleep-
dependent consolidation on a mirror tracing procedural motor
task despite intact initial learning; this occurred in the context
of reduced sleep spindles, but these deficits were not
correlated (76). Sleep-dependent consolidation of declarative
memory, tested with a picture recognition task, is also
impaired and correlates with reduced sleep spindles (72).
Spindle deficits also correlate with worse executive function
and lower IQ in APD-naïve patients with early-course SZ and
non-SZ psychotic disorders as well as in nonpsychotic first-
degree relatives of patients with SZ (80).

A limitation of these studies is that the small sample sizes
may leave them underpowered to detect meaningful effects
and contribute to inconsistent findings. For example, in one
motor sequence task study, the correlation between spin-
dle density and overnight improvement in SZ was significant
(r21 5 .45, p 5 .04) (31), but in a smaller study with a similar
effect size, it was not significant (r14 5 .46, p 5 .10) (73).
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Figure 4. Finger-tapping motor
sequence task. (A) The motor
sequence task requires participants
to type a 5-digit sequence (e.g., 4-1-
3-2-4) repeatedly on a keyboard with
the left hand “as quickly and accu-
rately as possible” for 12 30-sec trials
separated by 30-sec rest periods.
Participants train before sleep and
test on an additional 12 trials after
sleep. The primary outcome measure
is overnight improvement calculated
as the percent increase in correctly
typed sequences from the last three
training trials to the first three test

trials (49). (B) Sleep-dependent motor sequence task performance [data from Manoach et al. (98)]. (Left) At training, patients with schizophrenia (SZ; red
triangles) and healthy control subjects (HC; blue squares) show a similar time course of improvement, although patients with SZ are slower overall (see y axis
on right). (Right) Following a night of sleep, only the HC subjects show sleep-dependent improvement.
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In summary, the evidence suggests that spindle deficits
contribute to cognitive dysfunction in genetically high-risk
individuals and in patients with early-course and chronic SZ,
regardless of medications. These findings are congruent with
the large basic literature showing robust correlations
between spindle density and a range of cognitive measures
including IQ (61).

If TRN dysfunction gives rise to spindle deficits in SZ, there
may be other cognitive manifestations. The TRN is strategi-
cally positioned between other thalamic nuclei and the cortex
to modulate thalamocortical interactions (Figure 2). Conse-
quently, it plays an important role in waking cognition acting
as an “attentional searchlight” (101). Different sectors of the
TRN receive distinct inputs from the thalamus and neocortex
and have distinct projections to thalamic nuclei (102,103). It is
the TRN neurons that project to sensory rather than limbic
thalamic nuclei that participate in spindle generation, in the
inhibition of sensory processing during sleep, and in the
augmentation of sensory processing during tasks requiring
attention while awake (104). Schizophrenia is characterized by
deficits in sensory gating (105), attentional modulation, and
cortical gamma band oscillations, and all of these may depend
on the modulation of the flow of information from the thalamus
to the neocortex by the TRN (103,106,107). Abnormal cortical
gamma oscillations in SZ are associated with cognitive deficits
and are thought to reflect dysfunction of cortical parvalbumin-
containing GABAergic interneurons (108), which are abnormal
in SZ (109). Although there is a selective reduction of
GABAergic parvalbumin interneurons in anteroventral thala-
mus (110), to our knowledge, TRN GABAergic parvalbumin
neurons that generate spindles have not been studied. Dys-
function of the TRN in SZ may contribute to impairments in
sensory gating, attention, and cortical gamma oscillations
while awake and to spindle deficits during sleep.

Reduced spindle activity also correlates with increased
positive symptom severity in medicated patients with early-
onset SZ spectrum disorder (77) and in some (31,75), but not
all (72), studies of medicated patients with chronic SZ.
However, in APD-naïve patients with early-course SZ, reduced
spindle density correlated with decreased positive symptoms
(80). The opposite direction of these correlations may reflect
differences in the pathophysiologic underpinnings of positive
symptoms. In medicated patients with chronic SZ, residual
positive symptoms have not responded to dopaminergic
medications and may arise from GABA or NMDA hypofunction
(111), whereas in patients with early untreated SZ, positive
symptoms generally respond to APDs and may reflect dop-
amine hyperactivity (112). In healthy individuals, spindle den-
sity inversely correlates with magical ideation, an index of
liability to delusional beliefs, and with glutamine and glutamate
levels in the thalamus (113). Schizotypal traits, such as
magical ideation, exist on a continuum in the general pop-
ulation and may share neural substrates with the psychotic
symptoms of SZ. Although the mechanistic link of spindles to
positive symptoms is less clear than the link for memory, both
may reflect abnormal thalamocortical circuit function (114).
SLEEP SPINDLES AS A NOVEL TREATMENT
BIOMARKER FOR IMPROVING COGNITION IN SZ

Cognitive deficits are the strongest predictor of functional
outcome in SZ (115). Even after florid psychotic symptoms are
controlled with APDs, debilitating cognitive deficits persist,
and only �20% of individuals with SZ are able to work (116).
Although ameliorating cognitive deficits is a priority of the SZ
research community, effective treatments are lacking (117).
A better understanding of the pathophysiology of cognitive
deficits is needed to guide the development of new
treatments.

Although most data linking sleep spindles to cognitive
impairments are correlational, more recent work supports a
causal role for spindles in memory consolidation. In prelimi-
nary reports, optogenetic excitation of TRN neurons in mice
increased sleep spindles and improved memory, whereas
inhibiting TRN neurons decreased spindles and worsened
memory (118,119). In healthy humans, increasing spindles
with zolpidem (120,121), increasing sigma activity with trans-
cranial stimulation (122,123), and enhancing the synchroniza-
tion of sigma activity with slow oscillations using auditory
closed-loop stimulation (68) all improve memory, whereas
transcranial stimulation that decreases sigma activity impairs
memory (124).

Only a few studies have attempted to improve cognition in
SZ by manipulating spindles. In a small sample of pati-
ents, transcranial stimulation during N2 did not significantly
alter sleep parameters, but it improved word list recall (125).
Biological Psychiatry ]]], 2015; ]:]]]–]]] www.sobp.org/journal 5
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In a small preliminary study, eszopiclone, which acts on
GABAergic neurons in the TRN (126), significantly increased
spindles in SZ, but not sleep-dependent memory (127). In
another study that did not include polysomnography, eszo-
piclone improved working memory in SZ, but not symptoms
(128). This body of work provides an impetus to develop and
test novel therapies for spindle deficits to improve cognition.
GENETIC MECHANISMS OF SLEEP SPINDLES

In twin studies, EEG sigma power is highly heritable (herit-
ability estimate of 96%) (129) and shows high interindividual
variability and within-individual stability, leading to its descrip-
tion as an “electrophysiological fingerprint” (129–131). Despite
their high heritability, little is known about the genetic under-
pinnings of sleep spindles. Genome-wide association studies
(GWAS) have been conducted for sleep disorders (132), sleep
duration (133), and insomnia (134), but genetic studies of the
sleep EEG used relatively small samples and only a few
candidate genes (135). To understand genetic contributions
to spindle deficits in SZ, it is important to conduct well-
powered genetic studies of spindles in humans.

Like most human traits, sleep spindles likely have a complex
genetic architecture, with allelic variants in many genes com-
bining to influence spindle expression. GWAS with large sample
sizes can capture the genetic variation resulting from common
alleles. Alleles identified with statistical confidence can then
help to establish the broader gene networks that underlie
variation in spindles. GWAS data can also be used to estimate
genetic correlations between pairs of traits or diseases: the
extent to which genetic influences on one trait are shared by a
second trait. If spindle deficits are an endophenotype of SZ,
one would expect a significant degree of shared genetic
influences (as genes that influence spindles will indirectly
influence SZ risk). Contrasting the genetic association profiles
across spindles, SZ, related disorders, and sleep phenotypes
may illuminate causal relationships between these traits. It is
now also feasible to sequence the entire exome or genome in
large numbers of individuals—an approach that can identify
rare variants that may have larger effects on spindles because
rare variants are likely to have arisen recently (and might even
be de novo in the proband) and are less subject than common
variants to natural selection (136).

Recent genetic studies provide clues to potential mecha-
nistic links between spindles and SZ. For example, the largest
SZ GWAS to date (137) implicated common variants in
CACNA1I in SZ risk. In addition, two missense de novo
mutations of CACNA1I were identified in individuals with SZ
in a trio study, although not at rates statistically above chance
(138). CACNA1I encodes a T-type calcium channel (Cav3.3)
expressed only in the brain and particularly in the TRN (139)
(Allen Mouse Brain Atlas, available at mouse.brain-map.org;
6 Biological Psychiatry ]]], 2015; ]:]]]–]]] www.sobp.org/journal
GTEx, available at www.gtexportal.org), where it interacts with
sarcoplasmic/endoplasmic reticulum Ca21-ATPases and
small-conductance (SK)–type potassium channels to shape
delta and sigma frequency oscillations (140). Analysis of the
two de novo mutations found in SZ revealed that the R1346H
variant produces a channel with defective protein maturation
and channel trafficking, leading to reduced whole-cell currents
in a heterologous expression system (manuscript in prepara-
tion). This reduction would be expected to reduce the overall
expression of Cav3.3 and consequently the burst firing
necessary for spindles. Consistent with this, knocking out
CACNA1I in mice causes a spindle deficit (141). Studies now
underway are examining the effects of CACNA1I on sleep
spindles in humans and whether Cav3.3 channels are viable
therapeutic targets. This evidence places reduced sleep
spindle activity, a heritable component of the sleep EEG,
and a putative endophenotype of SZ that may contribute to
cognitive impairment and symptoms, in a hypothetical causal
chain from risk gene to diagnosis (Figure 5).
CONCLUSIONS

This review expands current models of cognitive deficits in SZ
by highlighting the importance of deficient sleep–dependent
consolidation of procedural and declarative memory. It impli-
cates reduced sleep spindles as a mechanism and suggests
novel pathophysiologic targets for treatment. Going forward,
we propose several potentially fruitful avenues of research.

First, it will be important to define the scope and con-
sequences of the sleep-dependent memory deficit in SZ.
Findings of dissociations (e.g., reduced motor procedural
memory in the context of intact spatial memory) (76) suggest
that only certain memory types are affected, perhaps those
that rely on spindles. It will also be important to understand
how memory deficits affect daily function. We have proposed
that the sleep-dependent procedural memory deficit repre-
sents a breakdown of task automation (98,142), which
normally renders performance faster, less variable, and less
dependent on voluntary attention (143). A failure of automa-
tion requires the allocation of attentional resources to task
demands that should have been automated by sleep, leaving
fewer resources available for higher order task demands. The
interaction between automatic and effortful processes is
what allows a brain with limited capacity to carry out complex
cognitive tasks. An impairment in sleep-dependent automa-
tion could contribute to the generalized cognitive deficits that
are a hallmark of SZ (144), and treating it could improve
function.

The work reviewed has implications for the development
and testing of novel therapies to improve cognition, including
pharmacologic and transcranial stimulation approaches.
Because standard neuropsychological tests assess function
Figure 5. Hypothetical causal
chain. The spindle deficit, a candidate
endophenotype of schizophrenia, may
link risk genes to fundamental cogni-
tive deficits, symptoms, and
diagnosis.
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in a single session, they miss critical aspects of learning and
memory that depend on sleep. Accordingly, it will be important
to include probes of sleep-dependent memory in clinical trials.
In addition to increasing spindles in SZ, interventions may
have to preserve or correct the temporal coordination of
spindles with neocortical slow waves and hippocampal ripples
to improve memory. It is unclear whether this orchestration of
NREM sleep oscillations is preserved in SZ, and animal
models are necessary to measure all three oscillations simul-
taneously. Understanding the pathophysiology and genetic
mechanisms of spindle deficits in relation to memory in SZ can
guide treatment development.

To evaluate the spindle deficit as an endophenotype it is
important to determine its specificity to SZ and to establish its
heritability and genetic architecture in larger studies. An impedi-
ment to large-scale genetic studies of spindles is the prohibitive
cost and difficulty of conducting sleep studies. For this reason, it
would be useful to develop waking assays of TRN function to
serve as more accessible surrogate markers of spindle activity.
Activity of the TRN has seldom been examined in vivo in humans
because its size and location make it difficult to identify with
neuroimaging (145). Animal models can illuminate the contribu-
tion of the TRN to waking cognition and its role in development.
The TRN and spindles are thought to contribute to the develop-
ment of thalamocortical connectivity and synaptic refinement
(146,147), processes that may go awry in SZ (148,149).

In summary, cross-disciplinary research can foster a more
complete understanding of the relationship of sleep spindles to
cognition and SZ and can identify pathophysiologic targets for
treatment. This line of work, by forging empirical links in causal
chains from SZ risk genes to cellular and circuit dysfunction to
spindle deficits, impaired memory, symptoms, and diagnosis,
provides unprecedented opportunities to advance our under-
standing of the genetics and pathophysiology of SZ and could
lead to improved treatment and possibly even prevention.
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