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Abstract

Background: The cerebellum is a complex structure that can be affected by several congenital and acquired diseases
leading to alteration of its function and neuronal circuits. Identifying the structural bases of cerebellar neuronal networks in
humans in vivo may provide biomarkers for diagnosis and management of cerebellar diseases.

Objectives: To define the anatomy of intrinsic and extrinsic cerebellar circuits using high-angular resolution diffusion
spectrum imaging (DSI).

Methods: We acquired high-resolution structural MRI and DSI of the cerebellum in four healthy female subjects at 3T. DSI
tractography based on a streamline algorithm was performed to identify the circuits connecting the cerebellar cortex with
the deep cerebellar nuclei, selected brainstem nuclei, and the thalamus.

Results: Using in-vivo DSI in humans we were able to demonstrate the structure of the following cerebellar neuronal
circuits: (1) connections of the inferior olivary nucleus with the cerebellar cortex, and with the deep cerebellar nuclei (2)
connections between the cerebellar cortex and the deep cerebellar nuclei, (3) connections of the deep cerebellar nuclei
conveyed in the superior (SCP), middle (MCP) and inferior (ICP) cerebellar peduncles, (4) complex intersections of fibers in
the SCP, MCP and ICP, and (5) connections between the deep cerebellar nuclei and the red nucleus and the thalamus.

Conclusion: For the first time, we show that DSI tractography in humans in vivo is capable of revealing the structural bases
of complex cerebellar networks. DSI thus appears to be a promising imaging method for characterizing anatomical
disruptions that occur in cerebellar diseases, and for monitoring response to therapeutic interventions.
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Introduction

The cerebellum is a complex structure that plays a major role in
motor control [1] as well as in cognitive-emotional processing
[2,3]. Knowledge regarding structure of the human cerebellum is
essential for understanding the functional consequences of
congenital and acquired neurological diseases of the cerebellum
including sporadic and hereditary ataxias, the consequences of
focal lesions such as stroke, and the cerebellar component of
neuropsychiatric diseases including schizophrenia, Asperger’s
syndrome and autism [4–8].
Investigations of the gross anatomy of the human cerebellum

date back to the 18th century [9–11] and have been further

elaborated upon in recent human MRI atlases [12–15]. In
contrast, knowledge of intrinsic neural circuits of the cerebellum
and extracerebellar connections with spinal cord, brainstem and
cerebral hemispheres has been derived exclusively from tract
tracing studies and physiological investigations in animals
because there has been no method available for the study of
these pathways and circuits in the human brain [16–22]. Recent
developments in MRI technology, however, have enabled the
study of the anatomical basis of cerebellar circuits in humans
using diffusion tensor imaging (DTI) methodology. Some
advances have been made using DTI [23] but the underlying
diffusion tensor model has intrinsic limitations that permit only
partial visualization of cerebellar white matter tracts, and limited
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capability to reveal complex anatomical details of the cerebellar
circuits [23].
In contrast, diffusion spectrum imaging (DSI), a high angular

resolution diffusion technique [24], is able to define more complex
structures such as crossing fibers. DSI has proven useful in
studying the fiber tracts and connections of the human cerebrum
and cerebellar systems in vitro [25,26]. We hypothesized that DSI
would yield new insights into the organization of the human
cerebellum in vivo. Specifically, we tested the hypothesis that the
connections of the human cerebellum in vivo would reflect those
identified in the experimental animal, and be consistent with
findings of the limited published post mortem studies to date.

Methods

Image acquisition and DSI tractography reconstruction
Four healthy female participants (age: 2664 yrs) underwent

magnetic resonance DSI in a commercial 3T scanner (Trio a Tim
System, Siemens, Erlangen, Germany) using a 32-channel head
helmet coil. The study was approved by the Institutional Review
Board of Siemens AG, Healthcare Sector, Imaging, Magnetic
Resonance, Process Lifecycle Management (H IM MR PLM,
Erlangen, Germany). All subjects provided written informed
consent prior to the imaging session. DSI was performed using a
single-shot spin-echo echo-planar imaging (EPI) product sequence
and the following parameters: TR/TE=6600/138, FoV=
212 mm, 34 slices, 2.2 mm isotropic resolution, GRAPPA=2,
258 diffusion directions covering a half q-space 3D grid with radial
grid size of 5, b(max) = 8000 s/mm2 and one image acquired at
b = 0 s/mm2 (referred to here as b0-image), total acquisition
time= 28:44 min. DSI scans centered in the cerebellum were
acquired twice and averaged subsequently. Diffusion encoding was
performed using a bipolar encoding scheme to minimize distortion
effects due to residual eddy-current effects introduced by the
diffusion gradient pulses [27]. High and low b-value scans were
interleaved to qualitatively assess subject motion. For anatomical
reference a whole brain high-resolution MPRAGE was acquired
using the parameters described in the ADNI protocol (http://
www.loni.ucla.edu/ADNI/Research/Cores/ADNI_Siemens_3T_
TrioTimVB13.pdf) (TR: 2400 ms, TE: 3.59 ms, 0.8 mm isotro-
pic resolution, FOV2566256). DSI reconstruction was performed
with Diffusion toolkit [28] using data from single DSI acquisitions
and from the averaged raw images. Subsequently, DSI tracto-
graphy was performed based on a FACT-like streamline algorithm
[29] using the TrackVis software [28]. We seeded a path for every
orientation density function (odf) max vector at every voxel,
extending the path along the vector of least curvature in a new
voxel, and stopping the process if this curvature $35u. The
colour-coding of the obtained fibers is based on standard RGB
code applied to the vector at every segment of each fiber. Blue
indicates the rostro-caudal direction; red the medio-lateral plane;
and green the dorso-ventral orientation.

Region of interest (ROIs) selection
We used the TrackVis 3-D tool to select the ROI in b0 images.

The anatomical structure corresponding to the desired ROIs was
initially localized in MRI atlases of the cerebellum [12,13],
subsequently identified in the MPRAGE images, and then selected
in the co-registered b0 dataset. The following regions were defined
as seed-point for the analysis: 1) the inferior olivary nucleus; 2)
deep cerebellar nuclei; 3) ventrolateral region of thalamus; 4) red
nucleus; and 5) the superior cerebellar peduncle (SCP), 6) middle
cerebellar peduncle (MCP), and 7) inferior cerebellar peduncle
(ICP). The pathways identified by performing tractography

through the ROIs were compared with known anatomical
pathways as defined in human gross anatomy texts [30] and in
connectional studies in experimental animals [31–33].

Results

The following pathways and connections were consistently
observed and visualized in all four subjects:
1. Connections between the inferior olivary nucleus and the cerebellar

cortex, and collaterals to the deep cerebellar nuclei (figure 1 A and B-I).
We positioned a ROI in an area corresponding to the inferior

olivary nucleus, situated in the rostral medulla oblongata between
the pyramidal tract and the lateral reticular nucleus (green ROI,
figure 1 A). Tracking from this ROI, we identified a pathway
entering the cerebellum through the ICP and connecting to: 1) the
dentate nucleus (light green, figure 1 A) and 2) the cerebellar
cortex (dark green, figure 1 A). This pathway is consistent with the
trajectory of the olivocerebellar climbing fiber system.
The collaterals to the dentate nucleus constitute a reciprocal

loop connecting the inferior olivary nucleus with the deep
cerebellar nuclei (olivary-dentate-olivary loop, figure 1 B). Fiber
solutions that do not connect to the dentate nucleus reach the
cerebellar cortex (olivary-cerebellar cortex connections, figure 1 B-
I), crossing at right angles with fibers in the cortex that have a
location and orientation consistent with parallel fibers. This
intersection of fiber trajectories in the cerebellar cortex could be
identified using the 3D display of the TrackVis software [28].
From the same ROI, we also visualized fiber tracts within the

pyramidal tract (blue, figure 1 A), because of the close proximity of
the inferior olivary nucleus and the pyramid in the medulla.
2. Connections between the cerebellar cortex and the dentate nucleus

(figure 2 A, B), emboliform and globose nuclei (figure 3 A, B), and the
fastigial nucleus (figure 3 C, D).
The Purkinje cells in the cerebellar cortex project to those parts

of the deep cerebellar nuclei that are closest to them, conforming
to a zonal, parasagittal orientation [16,17,19,34,35]. Thus, the
lateral hemispheres project to the dentate nucleus (figure 2 A, B);
the intermediate cortex project to the globose and emboliform
nuclei (figure 3 A); and the vermis projects to the fastigial nucleus
(figure 3 C).
We were able to show only a subset of the fibers expected to

connect the dentate nucleus with the lateral hemispheres of the
cerebellar cortex, most likely a consequence of signal-to-noise ratio
(SNR) and angular resolution limitations. Similarly, we were
unable to visualize the predicted connections between the fastigial
nucleus and lobules IX-X of the vermis [33].
3. Efferent projections from the deep cerebellar nuclei conveyed in the three

cerebellar peduncles (figures 2 A, B, C and 3 A–D).
After identifying a ROI in the area corresponding to each deep

nucleus (figure 2 and 3), we visualized fiber trajectories travelling
in 1) the SCP and the MCP linked to the dentate nucleus (figure 2
A, B); 2) the SCP from the interpositus nucleus (figure 3 A, B); and
3) the SCP and ICP from the fastigial nucleus (figure 3 C, D). In
order to better visualize the characteristic morphology of the
MCP, we also obtained a 3D view showing this tract coursing
around the basis pontis in the axial plane (figure 2 B).
4. Complex crossing intersections between the SCP and the ICP (figure 4

A–C), and the intersection between the MCP and the ICP (figure 4 B, C, D).
We positioned 3 ROIs along the 1) SCP (upper pons, figure 4 A–
D) 2) MCP (lower pons, figure 4 B–D) and 3) ICP (medulla
oblongata, figure 4 A–C). In this way, we visualized the
intersection between the SCP and the ICP (figure A–C) and the
3D spatial relationship between the MCP and the SCP/ICP
respectively (figure 4 B, D).

DSI of Cerebellar Circuits
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5. Connections that link the deep cerebellar nuclei with the red nucleus and
thalamus (ventro-lateral region) (figure 5 A and B).
When the ROI is placed in the region of the ventro-lateral

thalamus, fiber trajectories decussate to the contralateral cerebel-
lum and penetrate the medullary core of the cerebellum in the
region of the deep cerebellar nuclei. Some fiber trajectories that
emanate from the thalamic ROI towards cerebellum cannot be
traced to the cerebellum itself. Other fiber solutions identified by
the thalamic ROI continue into the spinal cord, likely reflecting
ascending spino-thalamic fiber systems.
The ROI placed in the red nucleus (figure 5 B) results in a

contingent of fibers that courses into the cerebellum, consistent
with the known efferent pathway leading from the interpositus
nucleus via red nucleus to thalamus. Other fiber solutions course
towards spinal cord. This may reflect fibers in the rubrospinal
tract, but it is also possible that it reflects corticospinal fibers in the
cerebral peduncles adjacent to the ROI in the red nucleus.

Discussion

In this study, we used Diffusion Spectrum MRI to test whether
it is feasible to examine the intrinsic and extrinsic cerebellar
circuits in the living human brain. Such ability represents a
necessary step in defining pathological anatomy of the spinocer-
ebellar and other ataxic disorders, in describing the cerebellar
component of neuropsychiatric illness, and developing biomarkers

Figure 1. Olivary-cerebellar cortex connections and olivary-
dentate-olivary loop. A) Sagittal tractography view, in a DWI image
background on the left, showing the connections between (i) the
Inferior olivary nucleus (green region of interest -ROI) and the cerebellar
cortex (light bright green fiber trajectories) and (ii) the Inferior olivary
nucleus and the Dentate nucleus (dark green fiber trajectories). The ROI
in the Inferior olive is shown in the sagittal, coronal, and axial planes in
the images at bottom (from left to right). B), C) and D) Axial
tractography view, in a DWI background, showing: B) the connections
between (i) the Inferior olivary nucleus (green ROI) and the dentate
nucleus (DN) through Dentate nucleus climbing fibers (DNCF) and (ii)
the connections between the inferior olivary nucleus (green ROI) and
the cortex through cortical climbing fibers (CCF); C) the intersection
between the CCF and parallel fibers (PF) from the granule cell axons. D)
PF in the cerebellar cortex. E) and F) Tractography magnification of an
axial view of the cerebellar cortex, in DWI background. PF and on the
left, PF intersecting CCF. G), H), I) 3D tractography view, in a DWI
background, showing: G) some PF traversing the cerebellar cortex. H)
PF crossing CF that are oriented perpendicular to them. I) Higher
magnification of H).
doi:10.1371/journal.pone.0005101.g001

Figure 2. Dentate nucleus connections. A) Sagittal view and B)
sagittal and axial 3D view of the Dentate nucleus (DN - see yellow ROI)
in a b0 background image. We show: (i) a subset of connections
between DN and the cerebellar cortex (lateral hemisphere) and (ii) fibers
identified by the ROI in the DN travelling in the MCP and the SCP. C) 3D
localization of the Dentate Nucleus (yellow ROI) in a b0 background
image in sagittal, coronal, and axial views (from left to right).
doi:10.1371/journal.pone.0005101.g002
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for disease progression and modifying interventions. We show, for
the first time in humans, that DSI has the capacity to elucidate the
structural basis of neural circuits in the human cerebellum in vivo.
We improved the intrinsic low-sensitivity of the DSI method by

optimizing the acquisition protocol and by using a 32-channel
head coil array at 3T to a level that allowed us to reconstruct and
visualize cerebellar circuits and pathways.
The study of cerebellar connectional networks is only partially

possible with DTI techniques, because DTI suffers from the
limitation of being unable to resolve the convergence of multiple
fiber bundles/connections into relatively small structures, as
occurs in the white matter in the medullary core of the cerebellum,
and within the cerebellar cortex itself [23,36]. DSI, a high angular
resolution method which images complex distributions of intra-
voxel fiber-orientations, overcomes this limitation of the DTI
technique and has the demonstrated capability of identifying fiber
crossings within neural structures [24]. This is exemplified by the
DSI demonstration of long association fibers pathways in the

monkey cerebral hemisphere, observations that were supported by
comparison with the results of tract tracing studies using the
autoradiographic technique [25]. Further, DSI is sufficiently
powerful to map regions of fiber-crossing not only in cerebral
white matter, but also in the basis pontis and the cerebral and
cerebellar cortices in monkey and human brains post-mortem
[26]. It is noteworthy that related techniques such as q-ball
imaging may lead to very similar results [37,38]. However, since
DSI represents the most general approach to disentangle complex
structures it was used in this investigation. To our knowledge, no
attempt has been made to map cerebellar connectivity networks
with DSI in humans in vivo.
Combining the ROI-based DSI tractography with high-

resolution anatomical images, we were able to visualize the
olivo-cerebellar circuits in humans in vivo. The fiber tracks that we
demonstrated linking the inferior olivary nucleus with the
cerebellar cortex and with collaterals to the deep cerebellar nuclei
(olivary-cerebellar nucleus-olivary loop), likely correspond to the
course and connectional patterns of the climbing fibers that
originate in the inferior olivary nucleus. We were also able to
identify essential elements of the intrinsic cerebellar circuitry: the
cortico-nuclear projection between deep cerebellar nuclei (fastigial,
interpositus and dentate) and the cerebellar cortex; and the
intrinsic cerebellar cortical circuitry, characterised by fiber
solutions corresponding to the granule cell axons’ parallel fibers

Figure 3. Interpositus and Fastigial nuclei connections. A)
Sagittal view of the region containing the Globose and Emboliform
nuclei (interpositus nucleus (IN) yellow ROI), in a b0 background image.
We show (i) the connections between the IN and the cerebellar cortex
(intermediate cortex) and (ii) the fibers that link these deep cerebellar
nuclei with the SCP. B) 3D localization of the location of the Globose
and Emboliform nuclei (yellow ROI) in a b0 background image in the
sagittal, coronal, and axial planes, from left to right. C) Sagittal view of
the Fastigial nucleus (FN) (see orange ROI), in a b0 background image.
We show (i) the connections between the FN and the cerebellar cortex
(vermis) and (ii) the fibers that link the FN with the SCP and ICP D) 3D
localization of the FN (see orange ROI) in a b0 background in bottom
figures in the sagittal, coronal, and axial planes, from left to right.
doi:10.1371/journal.pone.0005101.g003

Figure 4. The three cerebellar peduncles. Sagittal b0 image
showing the superior (SCP- see purple ROI) and Inferior cerebellar
peduncles (ICP – see yellow ROI) crossing in the cerebellar white matter
core. From the yellow ROI in the brainstem, a pathway connecting to
the diencephalon is also tracked B) Sagittal b0 image showing the
middle cerebellar peduncle (MCP – see red ROI & white arrow). C)
Sagittal view, no background showing the fiber-crossing region (FC)
between the inferior and the superior cerebellar peduncles (white
arrows) at higher magnification. D) Coronal b0 image showing the
precise location of the ROI used to seed the MCP (red ROI, white arrow).
doi:10.1371/journal.pone.0005101.g004
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that traverse the long axis of the cerebellar folium, intersecting
with the perpendicularly arranged fiber-tracks consistent with
climbing fibers of the olivocerebellar system traced from the ROI
in the inferior olive [39]. From tract tracing studies and
physiological investigations in animals [16–18,34], it is known
that climbing fibers (CF) originate from neurons in the inferior
olivary nucleus and terminate around the proximal dendrites of
the Purkinje cell (PC). Parallel fibers (PF), axons of the granule
cells, synapse with the distal dendrites of the PC. The CF and PF
thus constitute part of the connectivity substrate of the molecular
layer in the cerebellar cortex. DSI cannot reach to the level of the
synapse, but it does identify the perpendicular orientation of these
two cerebellar afferent fiber systems that intersect in the cerebellar
molecular layer, and it does so in vivo.
We show the extracerebellar pathways that are linked with the

deep cerebellar nuclei in the SCP, MCP and ICP. The capability
of the DSI method to resolve crossing fibers also makes it possible
to provide a visualization in human in vivo of the complex fiber
intersections between the three cerebellar peduncles, previously
shown in tracing studies [16,17,19]. Such a demonstration has not
been possible using DTI.
We have also provided evidence of the ability using DSI to

identify the thalamo-cortical pathway in humans by seeding the
ventrolateral region of thalamus, and the rubro-cerebellar
connection by placing the ROI seed in the red nucleus.

Advantages and limitations of the methodology
Optimizations of the acquisition protocol and the use of a

dedicated 32-channel coil with excellent SNR properties based on

Wiggins et al. [40], aimed at compensating for some of the
unfavorable SNR properties in high b-value diffusion MRI,
including averaging of consecutive scans [41]. Using this state-of-
the-art methodology and TrackVis 3D for interactive visualization
of fiber trajectories, we could map complex cerebellar tracts and
connectional pathways.
We note that accuracy of the tractography method is user

dependent because reconstruction threshold, turn angle, and mask
threshold have to be adapted according to scan parameters and
image properties. To address this limitation, we applied identical
tracking parameters to all the data processing.
Further, despite the advanced technology and methods used for

DSI acquisition, in some cases we could only partially map the
cerebellar circuit of interest. For example, we could visualize only
a subset of the fibers tracks connecting the dentate nucleus ROI to
the cerebellar cortex.
We hypothesize that this could have happened for three

reasons: first, the dentate nucleus is located deep within the
cerebellum. Due to the coil design the highest sensitivity and SNR
is provided in the superficial layers [40], whereas regions closer to
the center of the brain, such as the deep cerebellar structure are
imaged with a lower SNR rendering our method less sensitive in
these regions. Second, the dentate nucleus is a small structure
where fiber trajectories potentially diverge at smaller angles than
the angular resolution power of our DSI acquisition scheme.
For similar reasons, we could not track the complete path

connecting the ROI in thalamus and brainstem to the cerebellar
cortex via the deep cerebellar nuclei. Two separate fiber bundles
belonging to these pathways had to be delineated: first from the
ROI in thalamus and brainstem to the cerebellar deep nuclei, and
then from the deep nuclei to the cortex. Third, subject motion as
well as brain pulsation originating from cardiac and respiration
cycles may limit DSI tracking. Future iterations of this DSI
approach could be enhanced by combining specific higher SNR
and angular resolution at reduced scan times, as well as adding
image registration methods.
It is notable that all subjects tolerated the scan protocol with

minimal or no evidence of motion according to qualitative visual
inspections of the low b-value images, i.e. motion is evaluated to be
in the sub-voxel regime and thus of minimal influence for our
analysis.
In sum, we were able for the first time to visualize human

cerebellar circuits in vivo non-invasively using DSI. We demon-
strate pathways and connections that are in general agreement
with histological tract tracing studies in animal models. In vivo DSI
of the cerebellum has the potential to introduce new insights into
the pathophysiology of neurological and neuropsychiatric diseases,
and to provide anatomical and connectional biomarkers of
cerebellar disease.
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Figure 5. Thalamic – and Rubro-cerebellar connections. A)
Sagittal b0 image showing cerebellar connections with thalamus (green).
The ROI (yellow) is positioned in the ventro-lateral thalamus, as seen on
the left in sagittal, coronal and axial slices, from above to below. Some
fiber trajectories connecting the thalamus to the brainstem are also
shown (blue fiber tracts). B) The 3D localization of the ROI (red) in the red
nucleus is shown at left in the sagittal, coronal and axial slices, from above
to below. The sagittal b0 image shows the rubro-cerebellar connections
(green). Some fiber trajectories connecting the red nucleus to the
brainstem are also identified (blue fiber tracts).
doi:10.1371/journal.pone.0005101.g005
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