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Autism spectrum disorder (ASD) is a neurodevelopmental disorder
associated with impaired social and emotional skills, the anatom-
ical substrate of which is still unknown. In this study, we compared
a group of 14 high-functioning ASD adults with a group of controls
matched for sex, age, intelligence quotient, and handedness. We
used an automated technique of analysis that accurately measures
the thickness of the cerebral cortex and generates cross-subject
statistics in a coordinate system based on cortical anatomy. We
found local decreases of gray matter in the ASD group in areas
belonging to the mirror neuron system (MNS), argued to be the
basis of empathic behavior. Cortical thinning of the MNS was
correlated with ASD symptom severity. Cortical thinning was also
observed in areas involved in emotion recognition and social
cognition. These findings suggest that the social and emotional
deficits characteristic of autism may reflect abnormal thinning of
the MNS and the broader network of cortical areas subserving
social cognition.
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental

disorder characterized by debilitating socioemotional impair-

ments, yet its neural substrates remain unknown. ASD affects as

many as 1 in 166 children (Fombonne 2003) and is four times

more prevalent in boys than in girls. ASD is usually diagnosed

between the ages of 2 and 3 years, but early signs may be

detectable by 12 months of age (Osterling and Dawson 1994).

Defining features of autism include qualitative impairments in

communication and reciprocal social interaction as well as

repetitive and stereotyped behaviors (APA 1994).

One characteristic of ASD is the lack of empathy and emotional

engagement with others (Gillberg 1992; APA 2000). Individuals

with ASD have difficulty in relating to others and recognizing

their emotions and fail to show the usual empathic reaction

when other people demonstrate emotions of fear, pleasure, or

pain (Hobson 1993). Lack of empathy in ASD has been quantified

with objective test measures, such as the Empathy Quotient

Questionnaire (Baron-Cohen and Wheelwright 2004).

A possible neural substrate of empathy is the mirror neuron

system (MNS). The MNS was first identified as area F5 of the

premotor cortex in the monkey by Rizzolatti, Gallese, and their

colleagues (Gallese and others 1996; Rizzolatti, Fadiga, Gallese,

and others 1996; Rizzolatti and others 1999), who demonstrated

that a set of neurons in this area fired not only when a monkey

was moving its own hand or mouth but also when it saw another

individual (monkey or human) performing the same action. The

activation of the same area of cortex in the observation as well

as the execution of a given action led to the concept of an MNS.

Functional evidence for the presence of an MNS in humans

comes from several studies using transcranial magnetic stimula-

tion (TMS), electroencephalography (EEG), megnetoencepha-

lography (MEG), and functional magnetic resonance imaging

(fMRI) methodologies (Fadiga and others 1995, 2005; Grafton

and others 1996; Rizzolatti, Fadiga, Matelli, and others 1996;

Decety andothers 1997;Hari andothers 1998; Cochin andothers

1999; Decety and Grezes 1999; Iacoboni and others 1999;

Nishitani and Hari 2000; Strafella and Paus 2000; Buccino and

others 2001; Gangitano and others 2001; Grezes and Decety

2001; Maeda and others 2002; Carr and others 2003; Grezes and

others 2003; Leslie andothers 2004). Since its discovery, theMNS

has been found to be composed of a network of areas, including

the pars opercularis of the inferior frontal gyrus (IFG) and its

adjacent ventral area (inferior frontal cortex [IFC]), the inferior

parietal lobule (IPL), and the superior temporal sulcus (STS),

which are activated during the observation and imitation of an

action. Insofar as the MNS generates internal representations of

actions common to one’s self and others, it is likely to be involved

in our capacity to understand the actions and experiences of other

people. Such an understanding is critical to social--communicative

functioning, and accordingly, theMNS has been hypothesized by

various researchers to be the basis of ‘‘mind reading,’’ imitative

learning, and empathy (Gallese 2003; Leslie and others 2004).

Several recent functional brain-imaging studies have found

evidence of mirror neuron dysfunction in autism (Nishitani and

others 2004; Oberman and others 2005; Theoret and others

2005), implicating this neural system in autistic social impair-

ment (Williams and others 2001).

Both the imitation and the attribution of mental states involve

translating from another person’s perspective into one’s own. In

addition, imitation requires a shared representation of per-

ceived and executed action, and there is evidence suggesting

that the MNS together with the superior parietal lobule serve

this function (Iacoboni and others 1999; Williams and others

2001; Decety and others 2002; Heiser and others 2003; Koski

and others 2003; Leslie and others 2004; Buxbaum and others

2005). Several studies have found imitative deficits in autism

(for review, see Williams and others 2004), including deficits in

imitating simple body movements and actions with symbolic

meaning (Rogers and Pennington 1991) and in imitating facial

expressions of emotion (Hertzig and others 1989; Loveland and

others 1994). These deficits are present early in development

(Rogers and others 2003). Together, these findings suggest that

the basis for imitative and empathic deficits in autism could

arise from a dysfunction in the MNS.

One consistent finding in the neuropathology of autism is the

presence of enlarged head and brain size (Bailey and others

1993; Davidovitch and others 1996; Woodhouse and others
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1996; Lainhart and others 1997; Fidler and others 2000;

Fombonne 2000; Miles and others 2000; Aylward and others

2002) that is not present at birth but becomes evident during

the first year of life (Lainhart and others 1997; Stevenson and

others 1997; Courchesne and others 2001) and that appears to

be mostly due to white matter increases (Herbert and others

2003). There is also evidence of a range of cortical abnormalities

in autism (Gaffney and Tsai 1987; Berthier and others 1990;

Piven and others 1990; Berthier 1994; Bailey and others 1998;

Kemper and Bauman 1998), but the findings have shown little

consistency. This might be for several reasons, including sig-

nificant heterogeneity within the syndrome as well as the dif-

ferent ages of the cohorts that have been examined (for review,

see Brambilla and others 2003; Palmen and Van Engeland 2004).

Most magnetic resonance studies (Abell and others 1999;

McAlonan and others 2002, 2005; Boddaert and others 2004;

Waiter and others 2004) have used voxel-based morphometry

(VBM), a technique that does not give a direct measure of the

cortical thickness but instead gives probabilistic information

about gray matter volume, which risks partial voluming. VBM

studies have found gray matter abnormalities in the inferior

frontal (Abell and others 1999; McAlonan and others 2002),

parietal (McAlonan and others 2002), and temporal regions,

including the STS (Boddaert and others 2004), as well as changes

in the basal ganglia, the amygdala, and the cerebellum (Abell and

others 1999; McAlonan and others 2002). More recently,

McAlonan and others (2005) have shown generalized as well as

localized gray matter reduction in the fronto-striatal, parietal,

and temporal cortex in high-functioning autistic children,

pointing to an early structural abnormality of the ‘‘social brain.’’

In contrast to VBM, direct measures of cortical thickness can

reveal subtle cortical differences that are likely to reflect the

underlying neuropathological abnormalities. For example, in

schizophrenia, cortical thickness measures have proven useful

in identifying abnormalities in prefrontal and temporal cortices

(Kuperberg and others 2003). Direct measurement of the

cortical mantle avoids the risk of introducing confounding

factors by normalizing brains of different volumes into a com-

mon space and examining voxel intensities that might have

been affected by this transformation.

In this study, we used a direct measurement of cortical

thickness to examine the gray matter integrity and to explore

the anatomical substrate of behavioral symptoms in ASD. This

automated method, developed by Fischl and Dale (2000),

accurately measures the thickness of the cerebral cortex across

the entire brain and generates cross-subject statistics in a co-

ordinate system based on cortical anatomy. The intersubject

standard deviation of the thickness measure is less than 0.5 mm,

allowing the detection of focal atrophy in small populations or

even individual subjects. The reliability and accuracy of this new

method have been assessed by within-subject test--retest

studies as well as by comparison of cross-subject regional

thickness measures with published values. This technique has

also been validated with histological (Rosas and others 2002)

and manual (Kuperberg and others 2003) measurements. It has

been powerful in showing cortical thinning in schizophrenia

(Kuperberg and others 2003), Huntington disease (Rosas and

others 2002), and aging populations (Salat and others 2004).

Brain size is correlated with sex (Caviness and others 1996;

Giedd and others 1996), age (Caviness and others 1996; Giedd

and others 1996), intelligence quotient (IQ) (Andreasen and

others 1993; Thompson and others 2001; Posthuma and others

2002), and handedness (Witelson and Goldsmith 1991). In order

to restrict possible confounds due to these variations, we

compared a group of 14 high-functioning ASD young male

adults with a group of 14 male normal control (NC) subjects

closely matched for age, IQ, and handedness.

Materials and Methods

Participants
Informed consent was obtained for each participant, and all procedures

were approved by the Massachusetts General Hospital Internal Review

Board. Twenty-eight male subjects (14 ASD and 14 matched controls)

closely matched for age (ASD: 33 ± 12 years; NC: 31 ± 9 years; P < 0.6,

nonsignificant [NS]), IQ (ASD: 113 ± 15; NC: 118 ± 13; P < 0.4, NS), and

handedness (all right handed) participated in the study.

All participants were diagnosed with autism (8 subjects), Asperger

disorder (4 subjects), or pervasive developmental disorder not other-

wise specified (2 subjects) by an experienced clinician on the basis of

their current presentation and developmental history. The diagnoses

were confirmed using the Autism Diagnostic Interview--Revised (ADI-R)

(Lord and others 1994) and the Autism Diagnostic Observation

Schedule (Lord and others 2000) (see Table 1).

Imaging
Two high-resolution (1.0 3 1.0 3 1.25 mm) structural images were

obtained with a magnetization-prepared rapid acquisition with gradient

echoes sequence (128 slices, 2563 256matrix, echo time [TE] = 3.44ms;

repetition time [TR] = 7.25 ms; flip = 7�) on a 1.5-T Sonata MR scanner

(Siemens, Munich, Germany).

Surface Reconstruction and Cortical Thickness Estimation
The 2 scansweremotion corrected and averaged to create a single-image

volume with high contrast-to-noise. Brain surfaces were reconstructed

and inflated as described previously (Dale and others 1999; Fischl and

others 1999). Cortical thickness measurements were obtained by recon-

structing the gray/white matter boundary (Dale and Sereno 1993; Dale

and others 1999; Fischl and others 1999) and the cortical surface. The

distance between these 2 surfaces was calculated individually at each

point across the corticalmantle (representing a total of ~147000 vertices
in each individual). The maps of cortical thickness were created using

spatial intensity gradients across tissue classes andwere not restricted to

individual voxel intensities, allowing subvoxel resolution and submilli-

metric difference detection between groups (Fischl and Dale 2000).

Statistical Analysis
Data were then aligned according to cortical folding (Dale and others

1999) and smoothed on the surface tessellation, using an iterative

nearest neighbor procedure. Smoothing was restricted to the cortical

surface, thus avoiding the averaging of data across sulci or outside the

Table 1
ADI-R and ADOS scores of each participant in the ASD group

ADI-R ADOS

Communication Social Repetitive
behaviors

Communication Social Total Clinical
diagnosis

Subject 1 5 13 1 2 9 11 PDD
Subject 2 14 24 2 2 6 8 Autism
Subject 3 12 15 2 2 6 8 Asperger
Subject 4 7 15 5 3 5 8 Autism
Subject 5 20 27 11 7 13 20 Autism
Subject 6 2 6 8 PDD
Subject 7 13 12 2 3 8 11 Asperger
Subject 8 7 15 2 1 5 6 Asperger
Subject 9 8 16 6 3 5 8 Autism
Subject 10 16 22 8 3 10 13 Autism
Subject 11 14 26 6 2 8 10 Autism
Subject 12 10 14 2 3 3 6 Autism
Subject 13 7 15 5 1 5 6 Asperger
Subject 14 11 18 8 2 6 8 Autism

Note: ADOS, Autism Diagnostic Observation Schedule; PDD, pervasive developmental disorder.
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gray matter (Dale and others 1999). This method has the advantage of

matching morphologically homologous cortical areas based on the main

gyri/sulci patterns with minimal metric distortion. Per voxel t-tests were

then calculated between groups for the smoothed values on the target

surface.

In addition, definition of the regions of interest (ROIs) was performed

by the detection of contiguous regions of statistical significance

(P < 0.01) in the maps described above. These areas of regional thinning

were used to create ROIs on a standard brain that were mapped back to

each individual subject using spherical morphing to find homologous

regions across subjects. A mean thickness score over each location was

calculated for each subject. These scores were used to perform a t-test

between the 2 groups for each ROI. Spearman rank-order correlation

coefficients were computed to assess the degree of relationship

between cortical thickness and behavioral (social and communication)

symptoms as measured with ADI-R scores. Cortical locations were

defined according to Duvernoy (1999)

Results

Several areas were significantly thinner in the autism group,

including the IFG pars opercularis, IPL, and STS (Fig. 1). These

areas are part of the network argued to be the basis of imitative

and empathic behavior (e.g., Iacoboni and others 1999; Buccino

and others 2001; Rizzolatti and Craighero 2004).

Thinning was also present in areas involved in facial expres-

sion production and recognition (face regions in sensory and

motor cortex and in middle temporal gyrus) and in areas

involved in social cognition (prefrontal cortex, anterior cingu-

late, medial parietal cortex, supramarginal gyrus, and middle and

inferior temporal cortex).

There was no difference between groups in the remaining

areas of the cortex. Cortical thinning was not associated with

IQ scores in any of the areas of the MNS.

Significant associations between cortical thinning and autism

symptom severity were found in—and nearly restricted to—all

the areas constituting the MNS. Specifically, ADI-R combined

social and communication diagnostic algorithm scores, which

are based on the parental report of an individual’s behaviors

between the ages of 4 and 5 years, were correlated with cortical

thinning bilaterally in the IFG pars opercularis, IPL, and right STS

(see Table 2). The other areas that showed correlations with

ADI-R symptoms were the right superior parietal lobule, in-

volved in action observation and imitation (e.g., Buccino and

others 2001); the inferior occipital gyrus, involved in face

perception (e.g., Haxby and others 2000); and the supramargi-

nal gyrus, involved in phonological processing (e.g., Celsis and

others 1999).

Discussion

With this direct measurement of cortical mantle thickness, we

found significant thinning of areas belonging to the MNS (IFC,

IPL, and STS) and of other areas involved in social cognition in

individuals with ASD. The MNS couples action perception and

action production. This shared-representation model may also

apply to the domain of emotion. Empathy can be defined as a

phenomenon in which the perception of another’s state acti-

vates one’s own corresponding representation, which in turn

activates somatic and autonomic responses. The MNS is argu-

ably the basis of mind reading and empathy (Leslie and others

2004) and as suchmay well be implicated in the neuropathology

of autism. Lack of empathy and emotional engagement with

others is indeed one of the defining characteristics and very early

signs of autism (Charman and others 1997; Baron-Cohen and

Wheelwright 2004).

Our finding of thinning of the STS in individuals with ASD is

consistent with robust evidence of abnormal processing of eye

gaze in autism (Mundy and others 1986; Phillips and others

1992; Baron-Cohen and others 1997; Leekam and others 1998;

Ristic and others 2002; Pelphrey and others 2005). In healthy

individuals, observation of gaze direction is associated with STS

activation (Perrett and others 1992; Puce and others 1998;

Wicker and others 1998; Hoffman and Haxby 2000; Pelphrey

and others 2003, 2004). STS is sensitive to the intention or goal

directedness of a gaze shift (Pelphrey and others 2003), and the

right STS is preferentially involved in the processing of social

information conveyed by shifts in eye gaze (Pelphrey and others

2004). Deficits of activation of STS in ASD have been found in

a variety of tasks involving attribution of intentions on the basis

of shifts of gaze, body movements, or geometric figure move-

ment (Baron-Cohen and others 1999; Castelli and others 2002;

Mosconi and others 2005; Pelphrey and others 2005). Our

findings of cortical thinning in the right STS of ASD are also in

line with findings of volumetric differences (Boddaert and

others 2004) and sulcal displacement (Levitt and others 2003)

of STS in children with ASD.

Thinning was also observed bilaterally in the superior parietal

lobule, an area involved in imitation (Buxbaum and others 2005;

Chaminade and others 2005), a function that has been shown to

Figure 1. Mean thickness difference significance maps. Lateral, medial, and ventral views of the brain showing areas presenting cortical thinning in the autism group compared
with normal controls. No area showed cortical thickening. Significant thinning was found in areas belonging to the MNS as well as in areas involved in facial expression production
and recognition, imitation, and social cognition.
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be impaired as early as 34 months of age in children with autism

(Rogers and others 2003). Other areas of cortical thinning

included the face regions of the motor and premotor cortex

bilaterally, the right face somatosensory cortex, and the middle

temporal gyrus. These areas are involved in emotion production

and recognition. Damage to these areas results in deficits in

facial expression recognition, consistent with the fact that

deficits in production and recognition of emotion reliably co-

occur (e.g., Adolphs and others 1996). These findings could cast

light on the abnormalities shown by individuals with ASD in

facial expression recognition.

Additional areas of cortical thinning were found in the lat-

eral, medial, and ventral prefrontal cortex, the anterior cingulate,

the medial parietal cortex, and the supramarginal gyrus. These

regions have critical functions in social cognition (Brothers

1990), and functional imaging in autism has suggested altered

functionality in these regions (Baron-Cohen and others 1999).

For example, reduced medial prefrontal dopaminergic activity

and reduced glucose metabolism in the anterior cingulate gyrus

have been reported (Schultz and Klin 2002), and medial pre-

frontal cortex activation has been reported for tasks involving

the attribution of mental states in NCs (Fletcher and others

1995) but not in ASD subjects (Happe and others 1996).

The cortical thickness differences observed might be due

to primary developmental histopathological abnormalities, in-

cluding defective neuronal proliferation or migration (Rorke

1994), cell density, and microcolumnar changes (Casanova

and others 2002). Alternatively, or in combination, the cortical

thinning we observed in ASD could be a secondary conse-

quence of a lack of input to specific brain areas resulting either

from abnormal subcortical or cortical function or from primary

white matter abnormalities. The latter possibility is consistent

with recent findings of reduced cortical connectivity in ASD

(Belmonte and others 2004; Just and others 2004; Welchew and

others 2005).

The correlation of MNS thinning with ADI-R scores, based on

symptoms reported for the preschool years, may indicate that

MNS abnormalities are already present in early childhood. This

possibility is supported by recent data from McAlonan and

others (2005), who found changes in gray matter volumes in

high-functioning children with autism. Early dysfunction of the

MNS could generate abnormal development of other areas of

the social brain and result in several of the clinical features that

characterize autism, including the failure to develop reciprocal

social and emotional abilities. Indeed, if social understanding has

its basis in experiential sharing, a function sustained by the MNS,

autistic symptoms could be seen as developing as a consequence

of a lack of mimicry and empathic activity caused by an

underlying failure of the MNS system. Future studies using in

vivo magnetic resonance spectroscopy imaging, a method

allowing the characterization of a cell population involved in

pathological processes (e.g., Cheng and others 2002), might

clarify the underlying neuropathological change in autism, and

diffusion studies will cast light on the anatomical connectivity in

ASD brains.

Our technique is limited to measures of the cortex and does

not allow us to examine potentially affected subcortical

structures that play a pivotal role in the social brain, such as

the amygdala and the basal ganglia (Baron-Cohen and others

2000; Hrdlicka and others 2005; McAlonan and others 2005). In

addition, the present findings cannot determine whether the

anatomical differences observed are a cause or a consequence

of behavioral abnormalities, which will need to be resolved by

longitudinal studies. More studies are needed to finely probe the

functional integrity of this network in ASD and to investigate the

associations among cortical thickness changes, brain-activation

patterns, and the severity of the behavioral manifestations of

autism. Finally, studies of neurofunctional changes in children

receiving skills training in imitation and emotional decoding

may help to further specify the cerebral bases of empathic

behavior as well as to determine the degree of plasticity in this

neural system.
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Table 2
Areas of significant cortical thinning in autism compared with matched controls

BA Hemi Thickness (mm),
mean (SEM)

t-Test Correlation
with ADI-R
symptoms
(Spearman
r; P)

ASD Controls

Mirror system
IFG pars opercularis 44 rh 1.98 (0.04) 2.17 (0.04) *** �0.32; #0.1

lh 2.14 (0.07) 2.41 (0.06) ** �0.57; #0.05
IPL 39 rh 2.11 (0.06) 2.49 (0.07) *** �0.67; #0.01

lh 2.06 (0.03) 2.26 (0.05) *** �0.42; #0.1
STS 22 rh 2.05 (0.09) 2.39 (0.05) ** 0.40; #0.1

Face-related areas
Precentral gyrus
(motor face area)

4 rh 1.85 (0.02) 1.96 (0.03) ** NS

lh 2.11 (0.06) 2.36 (0.06) ** NS
Postcentral gyrus
(sensory face area)

SI rh 1.96 (0.03) 2.16 (0.03) *** NS

lh 2.03 (0.03) 2.24 (0.03) *** NS
Inferior occipital gyrus 19 rh 2.07 (0.08) 2.31 (0.06) * NS

lh 1.90 (0.06) 2.22 (0.05) *** �0.59; #0.05

Social cognition
Orbitofrontal cortex 11 rh 2.25 (0.04) 2.50 (0.05) *** NS

lh 2.52 (0.07) 2.76 (0.06) ** NS
Prefrontal cortex 10 rh 1.88 (0.03) 2.10 (0.04) *** NS

lh 2.07 (0.03) 2.34 (0.04) *** NS
Anterior cingulated 24 þ 32 rh 1.88 (0.05) 2.24 (0.05) *** NS
IFG pars triangularis 45 rh 1.96 (0.11) 2.25 (0.11) * NS
Superior frontal gyrus 8 rh 1.97 (0.05) 2.22 (0.03) *** NS

lh 2.00 (0.04) 2.16 (0.04) ** NS
Supramarginal gyrus 40 rh 2.34 (0.04) 2.58 (0.06) ** 0.51; #0.05

lh 2.20 (0.06) 2.51 (0.05) *** NS
Inferior temporal gyrus 37 rh 2.20 (0.06) 2.45 (0.09) * NS
Middle temporal gyrus 21 rh 2.39 (0.08) 2.74 (0.06) ** NS

lh 2.40 (0.06) 2.76 (0.04) *** NS
Middle occipital gyrus 19 lh 2.09 (0.03) 2.29 (0.02) *** NS
Superior parietal lobule 7a rh 1.97 (0.05) 2.18 (0.03) ** NS

lh 1.86 (0.03) 2.06 (0.03) *** NS
Medial parietal cortex 7b lh 2.07 (0.10) 2.41 (0.10) * NS

Imitation
Superior parietal lobule 7b rh 1.88 (0.04) 2.12 (0.05) *** �0.53; #0.05

lh 1.87 (0.03) 2.13 (0.04) ***

Note: BA, Brodmann area. All the areas that belong to the MNS are affected. Other areas

presenting cortical thinning are involved in facial expression production and understanding,

social cognition, and imitation. Thinning was specific to these regions, and no group

differences were found in the rest of the cortex. Hemi 5 hemisphere. Rh 5 right hemisphere.

Lh 5 left hemisphere. *P # 0.05; **P # 0.01; ***P # 0.001.
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