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Headache Medicine in Brazil: Review

The Cerebellum and Migraine

Maurice Vincent, MD, PhD; Nouchine Hadjikhani, MD

Clinical and pathophysiological evidences connect migraine and the cerebellum. Literature on documented
cerebellar abnormalities in migraine, however, is relatively sparse. Cerebellar involvement may be observed in 4
types of migraines: in the widespread migraine with aura (MWA) and migraine without aura (MWoA) forms; in
particular subtypes of migraine such as basilar-type migraine (BTM); and in the genetically driven autosomal dom-
inant familial hemiplegic migraine (FHM) forms. Cerebellar dysfunction in migraineurs varies largely in severity,
and may be subclinical. Purkinje cells express calcium channels that are related to the pathophysiology of both
inherited forms of migraine and primary ataxias, mostly spinal cerebellar ataxia type 6 (SCA-6) and episodic ataxia
type 2 (EA-2). Genetically driven ion channels dysfunction leads to hyperexcitability in the brain and cerebellum,
possibly facilitating spreading depression waves in both locations. This review focuses on the cerebellar involve-
ment in migraine, the relevant ataxias and their association with this primary headache, and discusses some of the
pathophysiological processes putatively underlying these diseases.
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Abbreviations: IHS International Headache Society, MWA migraine with aura, MWoA migraine without aura,
SD spreading depression, GABA gamma-aminobutyric acid, SCA spinal cerebellar ataxia, BTM
basilar-type migraine, FHM familial hemiplegic migraine, EAAT1 excitatory aminoacid trans-
porter 1, EA episodic ataxia, TGA transient global amnesia, SPECT single photon emission
computed tomography, CW calcium waves
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Migraine is a common disease that affects 10 to
12% of the population and is considered by the World
Health Organization as one of the most disabling neu-
rological disorders.1 Migraine attacks typically occur
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in varying intervals, each lasting 4 to 72 hours by def-
inition. The unilateral, mostly side-shifting throbbing
pain, located predominantly to the frontal parts of the
cranium, may be intense enough to interrupt daily ac-
tivity and worsens with physical activity. Nausea, vom-
iting, photo and phonophobia frequently accompany
the annoying moderate to severe pain. A series of dif-
ferent neurological focal abnormalities named aura
(from the Greek “breath,” gentle breeze), mostly vi-
sual in nature, but also sometimes sensory, motor, or
dysphasic, may occur in close association with the pain,
typically before the headache onset.2 The Internation-
al Headache Society (IHS) classifies migraine head-
aches, among other less frequent subtypes, as migraine
with aura (MWA), or migraine without aura (MWoA),
according to the presence of aura symptoms.3
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Pathophysiological Theories in Migraine.—The
mechanisms underlying migraine attacks remain fairly
unknown, although accumulating data have demon-
strated that this ailment is a primary brain disorder.4

A dispute whether migraine had either a nervous or
a vascular origin, polarizing the 2 so-called “vascular”
and “neuronal” theories, has been present for many
years,5 but the central nervous system more probably
seems be the ultimate source of migraine. The hith-
erto suitable vascular theory, which popularized the
expression “vascular headache,” has been challenged
by the information that aura and headache did not
parallel changes in the vasculature.6 The possibility
that abnormal brain hyperexcitability primarily orig-
inates migraine attacks is now widely accepted,7 and
the disease threshold, at least partially, seems to be
determined by genetic predisposition.8 The hyperex-
citability has been confirmed by the relatively higher
susceptibility of the migrainous cortex to phosphene
induction secondary to transcranial magnetic stimula-
tion.9 It seems, therefore, that the vascular responses
take place because of primarily triggered events in the
nervous system intimacy.

Spreading Depression.—Spreading depression
(SD) consists of a spreading wave of depolarization
associated with a reduction of the cortical activity
that lasts for minutes with a propagation speed of
around 3 mm/min. The expression “cortical spreading
depression” (CSD) is widespread, but since this
phenomenon is not exclusively cortical—it has been
recorded in various tissues including the basal ganglia
and thalamus,10,11 cerebellum,12-15 tectum and olfac-
tory bulb,12 retina,16-22 and spinal cord23—we believe
that “spreading depression” is a better denomination.

In 1945, Leão and Morrison suggested for the first
time that SD could be related to the pathophysiol-
ogy of migraine24 and Leão postulated that circula-
tory changes were in close connection with SD waves.25

SD compatible circulatory changes were subsequently
found in migraineurs, making the possibility of SD
being an important phenomenon in this disease even
more attractive.6 SD is accompanied by an initial hy-
perperfusion, followed by prolonged and pronounced
spreading hypoperfusion.26 The genetically hyperex-
citable brain in migraine probably facilitates parox-
ysms of SD-like phenomena initiating each of them

the cascade of events ultimately leading to the attacks.
Functional imaging studies support the possibility of
SD underlying migraine episodes.27 The trigeminovas-
cular system comprised of the trigeminal fibers in-
nervating meningeal and brain vessels is activated by
SD,28 leading to plasma extravasation and vasodilata-
tion (neurogenic inflammation) in the dura mater.29

The ability of triptans, a class of 5-HT1 agonists, to
block neurogenic inflammation and neuropeptide re-
lease centrally, has supported the defense of its use as
effective antimigraine agents.30-32

The Cerebellum.—Although Herophilus (335 to
280 B.C.) is usually cited for firstly recognizing the
cerebellum (from Latin, “small brain”) as distinct from
the brain, Aristotle did so before (“The history of an-
imals” book I, part XVI, 350 B.C.). Galen (131 to 200
A.D.) called the vermis “the worm-like outgrowth,”
Luigi Rolando (1773 to 1831) concluded the cere-
bellum was a motor structure, and Marie-Jean-Pierre
Flourens (1794 to 1867) finally linked the cerebellum
to coordination.33,34 The relatively simpler structure of
the cerebellum is highly specific and uniform, with cells
arranged in layers in the cerebellar cortex connected
each other by a repetitive microcircuitry.35 The Purk-
inje cells are the source of cerebellar output. There-
fore, malfunction in Purkinje cells severely impairs
motor planning and coordination.

CEREBELLAR DISORDERS IN COMMON
MWA AND MWoA FORMS OF MIGRAINE

In spite of the fact that balance changes and ver-
tigo have been recognized in migraine, only a few
studies have specifically assessed cerebellar function
between or during attacks. In migraine, stabilometry
studies have revealed ictal and interictal balance ab-
normalities in treatment-free patients.36,37 Vestibulo-
cerebellar function also seems compromised in mi-
graineurs, with abnormal nystagmus in calorimetric
testing and decrease in saccadic eye-movement accu-
racy.38 In addition, subclinical cerebellar impairment
expressed as a lack of fine coordination has been
shown interictally in migraineurs.39 Altogether, these
findings indicate that migraine affects cerebellar func-
tion.39

It is not surprising that vestibular abnormali-
ties may be detected in migraine patients, as about
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2/3 of migraineurs are sensitive to motion and 1/4
may present with paroxysmal vertigo.40,41 Although
a positive family history and previous motion sick-
ness in childhood do not contribute to the diagnosis of
MWoA, vestibular abnormalities are associated with
this type of headache.42,43 Visual dysfunction may also
impair coordination and probably impacts balance in
migraine.44 Spatiotemporal function and motion pro-
cessing are reportedly abnormal in migraineurs inter-
ictally45,46 and visual fields and contrast functions dif-
fer from controls.47

BASILAR-TYPE MIGRAINE
Cerebellar dysfunction has been recognized in re-

lation to special forms of migraine for many years. The
expression “cerebellar migraine” was used in some
German48,49 and Czech50 early publications. In 1961,
Bickerstaff described what he called “basilar artery
migraine,”51 making the expression “basilar migraine”
popular in neurology. According to the IHS, BTM is
characterized by aura symptoms clearly originating
from the brainstem and/or both hemispheres, with-
out motor deficits.3 Symptoms may include dysarthria,
vertigo, tinnitus, hypacusia, diplopia, visual symptoms,
ataxia, decreased level of consciousness, and bilateral
paresthesias.52 BTM has been considered more preva-
lent in adolescent girls with very positive family histo-
ries, but a recent analysis does not support BTM, which
presents with ataxia in 5% of the cases, as a distinct
migraine subform.53 The pathophysiology of BTM is
not known. Circulatory changes and episodes of stroke
putatively related to basilar-type migraine have been
reported.54 Such infarcts have also been reported in
the thalamus55 and the occipital areas.56-58 Knowing
the genetic mechanisms behind certain forms of mi-
graine, scrutiny indicates that many migraine patients
previously described according to their clinical pic-
tures as “cerebellar migraine” or “basilar migraine,”
probably carried one of the known ion channel re-
lated mutations. A mutation at the FHM2 locus at
the ATP1A2 gene has been described in familial BTM
without hemiplegia, suggesting a connection between
BTM and hemiplegic migraine.59 BTM most probably
represents a variation of MWA rather than another
migraine subtype, as 95% of the BTM patients expe-
rience typical aura as in MWA.53

FAMILIAL HEMIPLEGIC MIGRAINE AND
THE CEREBELLUM-RELATED DISORDERS

FHM is an autosomal dominant disorder char-
acterized by migraine attacks with hemiplegic aura.
The diagnosis is based on the presence of aura includ-
ing motor weakness and at least one first- or second-
degree relative suffering from migraine with aura that
presents with motor deficits.3 A multitude of associ-
ated symptoms may be present, including ataxia, seen
in one-third of the families.60 Three types of FHM
have been described so far: FHM-1 is consequent to
mutations of the CACNA1A gene coding for a P/Q
calcium channel;61 FHM-2 is due to the mutation of
the ATP1A2 gene coding for the alpha2 subunit of
the Na/K astrocytic ATPase;62,63 and FHM-3 follows
a mutation of the SCN1A gene coding for a neu-
ron voltage-gated sodium channel.64 The FHM pheno-
type includes hemiplegic migraine, seizure, prolonged
coma, hyperthermia, sensory deficit, and transient or
permanent cerebellar signs, such as ataxia, nystagmus,
and dysarthria.65

In FHM-1, the CACNA1A gene encodes the α1A

(CAV2.1) subunit of the high voltage-gated P/Q type of
calcium channel. This channel is expressed throughout
the central nervous system, particularly in the cerebel-
lar Purkinje cells, where it mediates depolarization-
induced Ca2+ influx into presynaptic terminals and
glutamate release.66,67 P/Q calcium channels play a piv-
otal role in neurotransmitter release68 and influence
neuronal excitability.69 The consequences of different
missense mutations in the CACNA1A gene may lead
to gain-of-function of human P/Q-type calcium chan-
nels, although not all studies agree in this respect.70

New animal models may provide important insights
in this field. A knockin mouse expressing the human
R192Q pure FHM-1 mutation was genetically engi-
neered and recently studied. This mouse shows gain-
of-function P/Q Ca2+ channel function as evidenced
by opening of calcium channels at lower levels of de-
polarization, lower threshold for SD and faster prop-
agation speed.71 These findings open the possibility of
SD-like phenomena in the cerebellum as a justification
for cerebellar dysfunction in migraine patients. Human
evidence confirming this hypothesis is however not yet
available.
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Table.—Cerebellar Symptoms in Earlier FHM Descriptions

Author (Reference) Year Gender Age Possible Cerebellar/Vestibular Sings and Symptoms

Ohta et al (151) 1967 Male 59 Unsteady gait, mild dysarthria, incoordination of the limbs.
Male 30 Apparent horizontal nystagmus on lateral gaze
Female 19 –
Male 13 –
Male 59 Slow speech and unsteady gait

Young et al (152) 1970 Male 33 Mild ataxia, worse during migraine attacks, nystagmus
Male 32 Nystagmus
Male 4 Nystagmus
Male 4 Nystagmus

Codina et al† (153) 1971 Female 44 Nystagmus
Male 14 Nystagmus
Male 49 Nystagmus

Zifkin et al‡ (154) 1980 Male 22 Nystagmus

Further cases described without cerebellar or vestibular abnormalities:
†Four cases; ‡one case.

The mechanisms behind the neurological symp-
tom complex linked to CACNA1A, ATP1A2, and
SCN1A genes, respectively involved with FHM 1, 2,
and 3, remain partially unclear. Noteworthy is the fact
that, despite the type of ion channel involved, all muta-
tions result in hyperexcitability and may be related to
hemiplegic migraine, epilepsy, and/or ataxic disorders.

Cerebellar symptoms in FHM have been recog-
nized in many families (Table). Such symptoms may
be produced by lesion in the cerebellum itself or in
structures with afferent or efferent cerebellar connec-
tions, such as the brainstem. Thus, the exact origin of
symptoms such as nystagmus and ataxia in migraine
patients cannot be definitely related to the cerebel-
lum. On the other hand, the atrophy found in FMH
and the calcium channel abnormalities in the cerebel-
lum indicate that symptoms are probably cerebellar in
nature.

Around 20% of the hemiplegic migraine patients
show permanent mild cerebellar deficits.72 Uncon-
sciousness, fever, and confusion may occur associated
with the hemiplegic attacks and ataxia, usually accom-
panied by cerebellar atrophy.73,74

SPINOCEREBELAR AND EPISODIC
ATAXIAS

The CACNA1A mutations are also involved with
cerebellar diseases, namely episodic ataxia type 2 (EA-
2) and spinocerebellar ataxia type 6 (SCA-6). Hered-

itary EAs are genetic conditions typically character-
ized by recurrent clumsiness triggered by exertion,
stress, or fatigue with a favorable response to aceta-
zolamide.75,76 Spinocerebellar ataxias (SCA) are ge-
netic non-paroxysmal, moderate to severe ataxias of
late onset characterized by progressive cerebellar de-
generation leading to incoordination. Other cerebel-
lar symptoms associated with spinal cord signs, such as
motor deficit, as well as vibratory and proprioceptive
sensory loss.75 The myriad of cerebellar symptoms in-
clude dysarthria, dysmetria, tremor, and nystagmus of
various types.77

A series of EA mutations have been found so
far,76,78-80 and a complete loss of the P/Q function
has been suggested to underlie the pathophysiology
of EA-2.81 Different nomenclature in successive de-
scriptions have confused the understanding of non-
progressive ataxias.82-84 SCA-6 has been associated
with small expansions of a CAG repeat at the 3

′
end of

the CACNA1A gene, and point mutations are respon-
sible for the allelic disorders related to EA-2.60,79,85-87

The genetics behind these phenotypes, however, may
vary.88 Regardless of the mutation type, hyperex-
citability seem to stand behind all the different pheno-
types. Interestingly, a mutation in the glutamate trans-
porter excitatory aminoacid transporter 1 (EAAT1)
is also related to episodic ataxia (EA), seizures, mi-
graine, and alternating hemiplegia.89 EAAT1 is ex-
pressed particularly in the cerebellum and brain stem.
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The mutation in EAAT1 may lead to a reduced ca-
pacity for glutamate reuptake, increasing hyperex-
citability. This reproduces the pathophysiological con-
ditions present in channelopaties leading to FHM,
episodic/progressive ataxias and coma after minor
head trauma.

SCA-6 represents the form of progressive ataxia
with closest relation to FHM pathophysiology, as this
form of SCA is also linked to the CACNA1A gene.90,91

Different mutations have been linked to the pheno-
type of SCA-6, sometimes associated with FHM.92

There may be marked cerebellar atrophy on MR ex-
amination in these patients.93 Not only mutations oc-
cur at the same gene, but in 20% of FHM patients
permanent cerebellar symptoms are present.94,95

The phenotypes of such disorders may vary be-
tween and within families.91,96 EA-2 patients may
sometimes have non-hemiplegic migraine, which
presents after the onset of the ataxic symptoms.97 In-
terictally, EA patients may present constant cerebellar
symptoms and signs such as nystagmus and cerebel-
lar atrophy. The migraine-progressive episodic ataxias
symptoms interchange indicate that the cerebellar dis-
orders related to channelopathies intermingle and may
represent different aspects from the same abnormal-
ity. Mechanisms behind ataxias in migraine disorders
most probably involve membrane dysfunction. Purk-
inje cells, where P/Q-type calcium channels are mostly
expressed, fire according to intrinsic regular sponta-
neous pacemaking.98 This intrinsic pacemaking activ-
ity is irregular in P/Q-mutant Purkinje cells as well as
in w-agatoxin IVA-blocked P/Q-type calcium channel
in wild Purkinje cells. The defective P/Q calcium cur-
rent decreases the function of calcium-activated potas-
sium (KCa) channels, which are fundamental for the
precision of the Purkinje cells intrinsic firing. EBIO,
a channel activator that increases the affinity of KCa

channels for calcium, recovers the regular firing in af-
fected Purkinje cells.99 This makes the KCa channel a
potential therapeutic target not only for EA-2, but also
for related symptoms in migraine disorders.

COMA, CEREBELLUM, AND MIGRAINE
One of the conditions associated with cerebellar

dysfunction, FHM and the CACNA1A gene is fatal
coma after mild head trauma.100-102 Some mutations

have been related to this phenotype. Patients carry-
ing the T666M mutation in CACNA1A gene,103 but
not exclusively as the chromosome 1 has also been im-
plicated in this kind of abnormality104—may present
coma following relatively mild head trauma, with brain
edema and sometimes long-lasting coma.101-103,105-107

The S218L mutation was shown to produce particu-
larly severe brain edema after trauma.108

As a hypothesis, the mechanisms leading to coma
can be understood as follows: minor trauma, a rel-
atively irrelevant depolarizing stimulus in healthy
subjects, may elicit SD in patients with a particu-
larly marked Cav2.1 channel gain of function, both
in the brain and cerebellum. Further activation may
then take place through a positive feedback leading
to Cav2.1-dependent glutamate release, activation of
NMDA receptors, de novo increase of extracelullar
K+, glutamate release, and more NMDA receptor ac-
tivation.109 SD may disrupt the blood–brain barrier by
activating MMP-9, one of the proteases implicated in
BBB opening,110 leading to brain edema and coma.
Interestingly, the long-lasting edema and coma take
place after a time interval following the trauma. This
indicates that the process is not dependent on immedi-
ate neuronal impulses and neurotransmitters release,
but on time consuming progressive changes. More-
over, the resulting pathophysiological state is a self-
perpetuating process with a relatively slow recovery
rate. Positive SD and calcium waves (see below) feed-
backs in particularly excitable subjects would fit with
these requirements. Transient global amnesia (TGA),
a potentially SD related disorder,111 may also be in-
duced by minor head trauma, just as coma in some pa-
tients with genetic forms of migraine where cerebellar
abnormalities may be present.112

THE ACETAZOLAMIDE EFFECT
Acetazolamide, a reversible inhibitor of the en-

zyme carbonic anhydrase, is a drug known for its
benefit in EA-2.79,113,114 Acetazolamide-responsive
episodic symptoms, typical of EA-2, have also been
shown in SCA-6.115 The effect of acetazolamide in EAs
was found in 1978 by chance, when patients received
this drug after being erroneously diagnosed as peri-
odic paralysis.114 Acetazolamide response has been
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described in FHM with associated ataxia74 and in mi-
graineurs without cerebellar symptoms.116

Acetazolamide does not usually diminish the fre-
quency or intensity of FHM, being mostly indicated
for use in EA-2. However, there are 2 FHM reports
with clear acetazolamide response.74,116 Formal trials
using acetazolamide in migraine are few. In an open
uncontrolled pilot study, the efficacy and tolerabil-
ity of acetazolamide were addressed in 22 MWA pa-
tients. 68.2% reported a reduction of MA episodes
higher than 50%.117 A randomized clinical trial was
performed comparing 500 mg oral acetazolamide ver-
sus placebo in 53 IHS migraine patients (27 in the
placebo group). This study had to be interrupted pre-
maturely due to many side effects related withdrawals.
So far, the authors did not find a difference between
the active drug and placebo.118 Acetazolamide was
also shown to interrupt aura status in 3 patients.119

The acetazolamide mechanism of action in
episodic ataxia type 2 (EA-2) is still mysterious. It
is interesting that topiramate, an effective antimi-
graine prophylactic agent, shares with acetazolamide
the property of carbonic anhydrase inhibition.120 Be-
sides, it was recently reported to suppress the suscepti-
bility to cortical spreading depression in experimental
animals.121 Acetazolamide induces metabolic acidosis.
It is possible that this drug increases the extracelullar
concentration of free protons in the brain tissue in-
cluding the cerebellum.113 Since calcium channels are
sensitive to pH changes, acetazolamide could restore
normal function in mutant calcium channels through
acidification. However, acetazolamide does not
modify the channel properties through either
pH-dependent or pH-independent mechanisms.122

Alternatively, since acetazolamide activate large-
conductance KCa channels, which are in normal con-
ditions exclusively activated in Purkinje cells by P/Q-
type calcium channels, it is possible that this drug acts
by restoring Purkinje cells pacemaking properties.99

CEREBELLAR CIRCULATORY CHANGES
Circulatory changes may take place in the cerebel-

lum during migraine attacks. Following sumatriptan
administration, a vasoconstricting antimigraine agent,
infarction has been described in the cerebellum, show-
ing that this area was probably predisposed to ischemia

as compared to other regions.123 Decreased perfusion
and cerebellar symptoms, including dysarthria, ataxia,
and dizziness have been described in migraine.124,125

Such circulatory changes can outlast the symptoms.125

Stroke in the posterior circulation has been reported
in migraine54,123 including in children,126 mostly di-
agnosed as “basilar migraine.” The posterior circula-
tion territory, particularly the cerebellum, shows sig-
nificantly increased risk for infarct-like MRI findings
compared to the remaining of the nervous system.
The highest risk is in MWA with at least 1 attack per
month, in the absence of stroke history.127 Accord-
ing to the CAMERA study, the percent of all these
small, infarct-like lesions in the posterior circulation
in MWA, MWoA, and controls were 81, 47, and 44%,
respectively; the majority was in vascular border zones;
and multiple posterior circulation lesions were identi-
fied exclusively among the migraine patients.128

The nature and pathophysiology of such infraten-
torial lesions are not known. Since the cerebellar cir-
culation has relatively few anastomoses, it is prone to
watershed infarcts.129 SD related reduction in rCBF
could, theoretically, induce more infarcts in this terri-
tory as compared to areas where collateral circulation
is available. Although subjects do not present overt
stroke symptoms, it is possible the subclinical cere-
bellar signs and symptoms in migraine36,38,39 are sec-
ondary to small infarcts in the posterior circulation.

SPREADING DEPRESSION AND
THE CEREBELLUM

Leão and Martins-Ferreira first published a 24 line
note on SD in the cerebellum, quadrigeminal plate,
and olfactory bulb12 and mentioned that the cere-
bellum is naturally resistant to SD. Fifková et al de-
scribed SD in the rat cerebellum13 and Young wrote on
the SD in the elasmobranch fish (Raja erinacea, Raja
ocellata).14 As also pointed by Nicholson in 1984, re-
viewing cerebellar SD in different species,15 the cere-
bellum does not easily supports this phenomenon, un-
less some “conditioning” takes place. This may hap-
pen by raising the extracelullar K+, removing most
of the NaCl, or replacing the chloride with another
anion. During SD, extracellular calcium concentra-
tion falls, reflecting Ca2+ influx with consequent in-
tracellular Ca2+ overload, that may, if sufficiently high,
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promote cell death.130 Just as in the isolated retina and
hippocampus, also in the turtle cerebellum SD occurs
in the absence of blood flow, meaning that SD is not
dependent on vascular or blood influence.15 If cerebel-
lar SD is related to EA-2, pH changes alone may be not
sufficient for explaining the acetazolamide effect. Al-
ternatively, SD could occur in the cerebellum through
facilitating mechanisms not involving pH reduction.

Other cortical self-propagating waves with poten-
tial implications in cerebellar diseases and migraine
have been demonstrated. Spreading acidification and
depression (SAD) has been observed in the rat cere-
bellar cortex following suprathreshold electrical stim-
ulation.131 Substantial differences show that SAD and
SD are not the same phenomenon. SAD spreads at
a greater rate of 50 to 110 m/s, continues for 1 to 2
minutes, is accompanied by a powerful suppression of
the pre and postsynaptic responses, with a refractory
period of 90 seconds. Differently from SD, SAD in-
duces no extracellular DC shift, do not change blood
vessels and has a shorter recovery period. Besides, the
conditioning required for SD in the cerebellum is not
required to elicit SAD. While SD propagates radially
outwards from the initiating point, SAD spreads per-
pendicularly to an activated beam of parallel fibers,
which makes its spreading pattern dependent on the
cerebellar cortex neuronal architecture. Pharmacolog-
ically, AMPA receptor blocking, which has little ef-
fect on SD, affects SAD, the opposite occurring with
NMDA receptor blocking. SAD depends on extracel-
lular Ca2+, while SD does not depend that strictly.132

SAD has been implicated in the pathophysiology of
EA-1, where pathology is related to a Kv1.1 voltage-
gated potassium channel abnormality,133 and is not
likely to be involved with the cerebellar symptoms in
migraine.

Astrocytes respond to glutamate with rapid cal-
cium influx that propagate as waves from one cell to
its neighbors.134 The so-called calcium waves (CW)
constitute a signaling system that allows astrocytes
to rapidly activate adjacent astrocytes and neurons,
through gap junctions, and extracellular messen-
gers,135,136 modulating synaptic transmission and neu-
ronal activity.137 CWs are also triggered by neuronal
activity138 and may be involved in blood flow regu-
lation. CWs have been implicated in cortical spread-

ing depression. They were demonstrated in cell cul-
tures and tissue preparations in different cell popu-
lations,139,140 and precede SD waves in hippocampal
cultures.141,142 Although these 2 forms of waves are
related, SD does occur in calcium-free incubated hip-
pocampal slices where CWs are abolished, demon-
strating that the latter is not an obligatory require-
ment for the former.142 Since FHM and the related
CACNA1A mutations diseases directly involve cal-
cium fluxing, it is tempting to consider that CWs asso-
ciated with SD might have a pathophysiological role
in this context.143 The glutamate release induced by
abnormal Cav2.1 channels in migraine could theoreti-
cally lead to not only SD, but also CW activation and
further vasodilatation, contributing particularly to the
phenotype of brain edema and coma following head
trauma. The astrocytes’ role in brain water homeosta-
sis regulation144 also supports this possibility.

STRUCTURAL CHANGES IN THE
CEREBELLUM AND MIGRAINE

Few studies have specifically addressed cerebellar
structural changes in migraine. Dichgans et al found
Magnetic Resonance Spectroscopy (1H-MRS) abnor-
malities in FHM-1 with reduced N-acetyl-aspartate
(NAA), glutamate and elevated myo-inositol (mI) in
the cerebellum, compatible with neuronal damage. In-
creased pH in the cerebrum and cerebellum, which
normalized following acetazolamide treatment, as well
as high lactate peak in half of the subjects has been
reported in EA-2 patients.145 Autopsy studies have
shown pathological abnormalities in SCA including
mild atrophy of the cerebellar folia, reduced number of
Purkinje cells especially in the vermis, swelling of the
Purkinje cell axons, decrease in granular cells, reduced
number of dendrites in the molecular layers of Purk-
inje cells, and cerebellar cortical degeneration with re-
duced thickness of the molecular layer.100,146 In FHM,
cerebellar vermis atrophy and cortical cerebellar de-
generation accompanied with Bergman glia prolifera-
tion have been described.147

FINAL REMARKS
Taken together, the data suggest that the cere-

bellum is implicated not only with FHM, but also
with more typical migraine forms such as MWA and
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Fig.—The brain and the cerebellum may share common pathophysiological mechanisms leading to different clinical pictures, which
combine in diverse ways, largely varying in severity. Hyperexcitability, the pivotal abnormality in migraine, may be due to inherited
calcium channel malfunction, as in CANCA1A mutations, or other mutations, such as excitatory aminoacid transporter 1 (EAAT1),
Na/k-ATPase, or SCN1A. Trigger factors in susceptible individuals, such as trauma or angiography, would lead to paroxysmal
spreading depression and related calcium waves, leading to temporary dysfunction in both cerebrum and cerebellum. Headache
may be explained by SD activation of trigeminal (anterior circulation, the rostral third of the basilar artery and the superior
cerebellar artery) and/or C2 sensory fibers (remaining vessels of the vertebrobasilar system). Progressive symptoms could be the
result of cumulative ischaemic lesions and progressive atrophy provoked by exaggerated calcium influx. BBB: blood–brain barrier
and MMP-9: matrix metalloprotease.

MWoA. The ionic and signaling changes present in
migraine may affect also the cerebellum potentially
leading to cerebellar dysfunction (Fig.). Cerebellar
symptomatology, which does not depend on the pres-
ence of headache, may be episodic, suggesting an un-
derlying transitory neuropathological change in the
cerebellum such as SD; or present as a constant-
progressive disorders. In this case, an increase in Ca2+

influx secondary to defective Ca2+ channels expressed
by Purkinje cells would favor apoptosis, possibly in a
cumulative, slowly progressive pattern. Alternatively,
cumulative microvascular ischemia in watershed cere-
bellar areas secondary to successive migraine attacks

could also impair cerebellar function with time in some
cases. The pain may be produced by CGRP-containing
sensory nerves activated by SD in the anterior circu-
lation (trigeminal fibers) and/or posterior circulation
(C2 fibers). Trigeminal fibers may also be partially ac-
tivated by SD in some parts of the cerebellum as the
rostral third of the basilar artery as well as the supe-
rior cerebellar artery are innervated by the trigeminal
nerve.148,149

Knowledge on the genetic mechanisms leading
to dysfunction in ion channels, ion pumps, and trans-
porters has improved our understanding of migraine
and related cerebellar disorders, although puzzling
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questions still remain. It is unclear how a multitude
of phenotypes including minor trauma with edema
and coma, fever, pleocytosis, hemiplegic migraine, and
cerebellar ataxias, is related to a single mutation. The
clinical picture in EA, for example, may vary to a great
extent, such as from isolated mild ataxia to a constel-
lation of symptoms suggestive of cerebellum, brain-
stem, and cortex dysfunction.150 This may indicate that
phenotypic pleomorphism is a rule rather than an ex-
ception in these ailments. If an SD-like phenomenon
underlies this group of diseases, it is likely that it may
sometimes either not be clinically expressed, or mani-
fest in different forms or degrees.

Cases reported as “basilar migraine,” “footballer’s
migraine” or “cerebellar migraine” do not seem to
constitute distinct entities. They may actually corre-
spond to mere variations within the migraine chan-
nelopaty spectrum. As the molecular mechanisms im-
plicated in migraine, ataxia, coma after minor trauma,
and related disorders are better understood, it seems
probable that clinical terms will be reviewed, and clas-
sifications will be established on a genetic-biochemical
basis.
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