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Abstract: A general linear model for time domain (TD) fluorescence
tomography is presented that allows a lifetime-based analysis of the entire
temporal fluorescence response from a turbid medium. Simulations are
used to show that TD fluorescence tomography is optimally performed
using two complementary approaches: A direct TD analysis ofa few time
points near the peak of the temporal response, which provides superior
resolution; and an asymptotic multi-exponential analysisbased tomography
of the decay portion of the temporal response, which provides accurate
localization of yield distributions for various lifetime components present in
the imaging medium. These results indicate the potential ofTD technology
for biomedical imaging with lifetime sensitive targeted probes, and provide
useful guidelines for an optimal approach to fluorescence tomography with
TD data.
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1. Introduction

The development of disease-specific fluorescent markers andgenomic reporters has prompted
concurrent advances in optical tomography techniques for the non-invasive diagnosis of disease
in a living animal or human subject [1, 2]. The most common optical tomographic techniques
for fluorescence are based on continuous wave (CW) excitation[3] and frequency modulated
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(FD) excitation [4, 5]. Another measurement mode is in the time domain (TD) [7–15], where
the excitation is performed using short laser pulses in conjunction with time resolved detec-
tion. Fluorescence lifetime reconstructions with turbid media have been discussed in previous
works in conjunction with FD [4, 5] and TD [6, 11–14] measurements (CW measurements are
incapable of distinguishing fluorescence lifetime from yield). A single TD measurement with
a short laser pulse implicitly contains all modulation frequencies, and hence provides the most
complete optical information. Moreover, the surface decaydata from TD measurements can
directly reveal the intrinsic fluorophore lifetime, without the need for reconstructions [11–13].
This feature could be of tremendous importance given the potential development of lifetime
sensitive probes for in-vivo applications and the sensitivity of fluorescence lifetime to factors
affecting local tissue environment such as pH, viscosity, oxygen concentration and tissue aut-
ofluorescence, in addition to molecular interactions such as Forster resonance energy transfer
(FRET) [17]. Fluorescence lifetime imaging (FLIM) is already a well established microscopy
technique that is used to probe lifetime contrast in thin tissue sections [18,19].

Image reconstruction algorithms for TD fluorescence measurements have so far been pri-
marily based on derived, or transformed, data types, such asthe Laplace transform [8, 23],
Mellin transform or moments [15] and the Fourier transform [27,28]. One advantage of work-
ing in a transformed space of the TD data lies in the simplicity of the relationship between the
fluorescence lifetime and the measured phase, as compared tothe non-linear dependence on
fluorophore lifetime (through the exponential decay factor) in the direct TD case. For instance,
the phase measured in FD experiments is linearly related to the lifetime distribution [4]. Nev-
ertheless, the lifetime is still in the form of a distribution, which can only be recovered using
tomographic reconstructions to remove the contribution tothe phase from diffusive propaga-
tion. Also, the measured phase at a certain modulation frequency (or imaginary frequency in the
Laplace case) is an admixture of contributions due to all thelifetimes present in the medium.
On the other hand, Laplace transforms have been applied to selectively reconstruct the early
rise portion of the temporal response curve, since early arriving photons undergo minimal scat-
tering, and are largely unaffected by the long lived fluorophore lifetimes [8].

We recently demonstrated experimentally [13] that analyzing the asymptotic decay portion
of the diffuse fluorescence temporal response (DFTR) can by itself have distinct advantages:
The yield distribution(s) for multiple lifetime component(s) present within the medium can be
localized separately using the surface decay amplitudes extracted from multi-exponential fits.
In what follows we will simply label this the “asymptotic” approach. The asymptotic approach
reduces a cumbersome analysis of a large temporal data set inthe decay portion of the DFTR
into a multi-exponential curve fitting followed by simple CWreconstructions. This approach
can be viewed as an application of theinverseLaplace transform (which is equivalent to multi-
exponential fitting for a few discrete lifetimes) to reconstruct the decay portion of the DFTR.
However, the restriction of this method to the decay portionexcludes the information from the
earlier portion of the DFTR, which is characterized by a better signal-to-noise (SNR) ratio, and
may also contain useful spatial information. It is thus imperative to seek an approach that incor-
porates the rising and peak portions of the DFTR data into theanalysis. In this work, we develop
a theoretical formalism that allows a lifetime-based separation of fluorescence yield distribu-
tions using the entire TD data. In order to evaluate the optimal choice of temporal measurements
for tomography using the direct TD approach, we use a singular value decomposition analy-
sis [29, 30] of the TD weight matrix. To our knowledge, this optimization has not been carried
out previously for TD fluorescence measurements, although optimization of multi-frequency
data in FD has been studied previously [27,28]. The relativemerits of the optimized direct TD
approach and the asymptotic approach are then compared using simulations and the advantages
of TD data over CW, in the presence of lifetime contrast, are demonstrated.
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This paper consists of three central parts. In Section 2, keyintegral expressions are presented
that enable lifetime-specific tomographic reconstructions of the entire DFTR, along with a dis-
cussion of the conditions when the results are valid. In Section 3, the optimization of temporal
measurements for fluorescence tomography is addressed numerically, using a SVD analysis. In
Section 4, the theoretical formalism developed and the results of the SVD analysis are applied
to simulated noisy data to more specifically determine the imaging performance of the rise and
decay portions of the DFTR.

2. Theoretical development

In this section, we revisit the basic expressions involved in TD fluorescence tomography, and
present a simplified expression under the specific conditionof long lifetimes. Consider a turbid
imaging medium embedded with fluorophores, described by yield and lifetime distributions
(at one wavelength)η(r) and τ(r) = 1/Γ(r), respectively. For tomography, optical sources
and detectors are arranged on the surface of the imaging medium. The fluorescence intensity
measured at a detector pointrd at timet for an impulsive excitation at source positionrs and
t = 0 can be written in the standard way as a double convolution over time, of the source and
emission Green’s functions (omitting experimental scaling factors for simplicity):

UF(rs, rd, t) =
∫

Ω
d3rW(rs, rd, r , t)η(r), (1)

where the weight function, or sensitivity function is givenby

W(rs, rd, r , t) =
∫ t

0
dt′

∫ t ′

0
dt′′Gm(rd − r , t − t ′)e−Γ(r)(t ′−t ′′)Gx(r − rs, t

′′), (2)

with Gx andGm denoting the source and emission Green’s functions, which depend on the net
absorption and scattering coefficients (background + fluorophore) at the excitation and emission

wavelengths,µ(x,m)
a (r) and µ(x,m)

s (r). The above expression assumes a single absorption and
re-emission event due to the fluorophore. But this does not prevent the inclusion of multiple
absorption of the excitation and emission light by fluorophores in the background medium,
which can be incorporated by obtaining theG(x,m) as solutions to the diffusion or transport
equations at the excitation and emission wavelengths with the net absorption including the
fluorophore absorption at these wavelengths.

As it stands, the TD fluorescence weight function in Eq. (2) isa double convolution in time
and is computationally intensive, especially for a tomographic measurement setup with a large
number of sources and detectors. But a closer inspection reveals that Eq. (2) can be rewritten in
a more manageable form. First, we define a background weight function as:

WB(rs, rd, r , t
′) =

∫ t ′

0
dt′′Gx(rs, r , t ′− t ′′)Gm(r , rd, t

′′), (3)

which depends only on the medium optical properties and reduces to the weight function for
an absorption perturbation when the excitation and emission wavelengths coincide. Using the
commutativity of the convolution operation, we can now re-write Eq. (2) as,

W(rs, rd, r , t) =
∫ t

0
dt′WB(rs, rd, r , t

′)e−Γ(r)(t−t ′). (4)

SinceWB can be pre-calculated with a knowledge of background optical properties, the ad-
vantage of Eq. (4) over Eq. (2) is that only a single time integral is left for the tomographic
recovery of the yield and lifetime distributions [20]. A more useful form of this expression is
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realized if the fluorophores within the medium are describedas multiple distributions,ηn(r),
corresponding to discrete lifetime components,τn = 1/Γn. We then get, for the weight function
of each lifetime component,

Wn(rs, rd, r , t) =

∫ t

0
dt′WB(rs, rd, r , t

′)e−Γn(t−t ′), (5)

so that the total fluorescence signal is expressed as

UF(rs, rd, t) = ∑
n

∫

Ω
d3rWn(rs, rd, r , t)ηn(r). (6)

If it is further assumed that the lifetimes are longer than the absorption timescale, i.e.,τn >
τa(= 1/vµa(r)), (see Section 2.1) Eq. 5 can be expressed in a more elegant waythat also
reveals the connection with previously developed asymptotic lifetime-based-tomography [13].
To derive this most generally, consider the source-free radiative transport equation (RTE) for the
Greens functionsG(x,m), which is a rigorous description of light transport in a turbid medium
[21,22]:

(

s·∇+
1
v

∂
∂ t

+ µ(x,m)
a (r)+ µ(x,m)

s (r)
)

G(x,m)(r ,s, t) (7)

= µ(x,m)
s (r)

∫

Ω
Θ(s,s′)G(x,m)(r ,s′, t)ds′,

whereΘ(s,s′) is the scattering phase function. The source terms are dropped from the excita-
tion RTE on the basis that the fluence is calculated away from the source location, and similarly
from the emission RTE, given that only a single fluorophore emission event is considered in
accordance with the Born approximation initially made in Eq. 2. (Multiple absorption of the
excitation and emission light by the fluorophore is still incorporated in the total absorption at
these wavelengths viz.,µx

a andµm
a .) Suppose now that we write (dropping the angular depen-

dence for simplicity):

G(x,m)(r , t) = G(x,m)
0 (r , t)e−vµ(x,m)

a (r)t , (8)

it can be verified by substituting the above solution into Eq.(7) that the functionsG(x,m)
0 are

dependent only on thegradientof the absorption coefficient,∇µ(x,m)
a (r), and independent of

µ(x,m)
a (r) itself. Thus,G(x,m)

0 are invariant to constant shifts in the absorption. If we define the

Green’s functionsG(x,m)
n evaluated using a reduced background medium absorption,µ(x,m)

a (r)−
Γn/v, which is positive under the long lifetime condition viz.,Γn < vµ(x,m)

a (r), it is then easily
verified using Eq. (8) that

G(x,m)
n (r , t) = G(x,m)(r , t)|µa−Γn/v = G(x,m)(r , t)|µaeΓnt . (9)

Now, writing eΓnt ′ = eΓn(t ′−t ′′)eΓnt ′′ , we can use Eq. (9) in Eq. (5) to show that:

Wn(rs, rd, r , t) = e−Γnt
∫ t

0
dt′WB

n (rs, rd, r , t
′), (10)

whereWB
n is given by Eq. (3) but with the reduced absorption Green’s functionsGx,m

n .
The form of the weight function in Eq. (10) allows the fluorescence signal to be expressed as

a multi-exponential sum, analogous to fluorescence lifetime imaging [18] (FLIM):

UF(rs, rd, t) = ∑
n

An(rs, rd, t)e
−Γnt , (11)
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Fig. 1. Simulations to elucidate the diffuse and pure fluorescent decay components in the
diffuse fluorescence temporal response, and to demonstrate the accuracy the time domain
fluorescence model presented in Eq. (11) in the text. The medium was aninfinite slab
of thickness 2cm (left panel) and 10cm (right panel), with optical properties µx

s = µm
s =

10/cm,µx
a = µm

a = 0.1/cm. The fluorescence signal was calculated for a single source
detector pair, with a small fluorescent inclusion at the center. The signalcalculated using
the conventional approach in Eqs.(1-2), (+ symbol) is compared with that calculated using
an effective-absorption based model, viz., Eqs. (11-12) (solid black line). The convolved
medium diffusion,A(t) (dotted blue line) and asymptotic fluorescence decay (dashed red
line) are also delineated for both cases.

where the decay amplitudesAn depend on time, in addition to the source and detector locations.
The amplitudes define a linear inversion problem for the yield distributions of each lifetime
component:

An(rs, rd, t) =
∫

d3r

[

∫ t

0
dt′WB

n (rs, rd, r , t
′)

]

ηn(r). (12)

For fluorophores with lifetimes comparable to optical diffusion time scales in biological media
(≈ nanoseconds),An(t) has a non-trivial time evolution that is determined by the size and
optical properties of the imaging medium. In Figure 1, the temporal evolution ofA(t) is shown
for infinite slabs of thicknesses 2cm and 10cm, with a single 2mm3 fluorophore inclusion of 1ns
lifetime embedded at the center of the slab. Furthermore, the net fluorescence signal calculated
using Eqs. (3) and (11-12) is compared with the fluorescence signal computed directly using
Eqs. (1-2), to confirm the accuracy of the effective absorption model in Eq. (10). The above
equations are also applicable to phosphorescence signals from diffuse media [16], where the
lifetimes (≈microseconds) are very large compared to the diffusion timescales. In this scenario,
A(t) can be approximated as a step function in time.

Asymptotic limit: From Eq. (10), it is clear that the weight function for each lifetime com-
ponent is an average over a timet of the background sensitivity functionWB

n . Let τD denote
the timescale for the evolution ofWB

n , which will depend on absorption, scattering and medium
boundaries (see section 2.1 below). Fort > τD, the average overWB

n will then become time
independent and reduce to a CW sensitivity function, which we denote byWn. We are thus
lead to asymptotic lifetime-based tomography, which was derived previously using complex
integration (see Eqs. (3) and (4) in Reference 13):

lim
t>τD

Wn(rs, rd, r , t) → e−ΓntWn(rs, rd, r). (13)

Therefore, Eqs. (11-12) along with Eq. (3) constitute a TD generalization of asymptotic
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lifetime-based tomography, that includes the early arriving photons in addition to the asymp-
totic decay portion corresponding to the late arriving fluorescent photons. Note from Fig. 1 that
the amplitude of the asymptotic fluorescence decay (shown asdashed red lines) equals the long
time value ofA(t), which is related to the CW sensitivity functionW.

The results presented in this section can be summarized as follows. With the lifetimes cal-
culated from the asymptotic decay of the TD signal, Eq. (11) can be used to reconstruct the
yield distribution for each lifetime using TD data. Since the amplitude for each lifetime is in
general time dependent and cannot be separated, the reconstruction is performed directly on the
measured data:









.

U j
F(tk)

U j
F(tk+1)

.









=









. . . .

. W j
n (tk) W j

n+1(tk) .

. W j
n (tk+1) W j

n+1(tk+1) .
. . . .

















.
ηn(r)

ηn+1(r)
.









, (14)

where for simplicity of notation we have dropped the source-detector co-ordinates and have
instead used a single superscriptj to denote measurement index that labels each source-
detector (S-D) pair. For times longer thanτD, the decay amplitude becomes time-independent,
so that the amplitude for each lifetime component can be recovered asymptotically using multi-
exponential fits. These amplitudes constitute a derived data set (inverse Laplace transform) for
the inversion of the yield distributions:









.

A j
n

A j
n+1
.









=









. . . .

. W
j
n 0 .

. 0 W
j
n+1 .

. . . .

















.
ηn(r)

ηn+1(r)
.









. (15)

The key difference between Eqs. (14) and (15) is that the asymptotic weight function in Eq. (15)
is block diagonal, whereas the TD weight function in Eq. (14)has off-diagonal terms. Thus,
the direct TD reconstruction will be characterized by significantly more cross-talk between the
lifetime distributions than the asymptotic reconstruction. At least two questions immediately
arise, related to the practical application of the above results. Firstly, what is the optimal choice
of time points for the TD reconstruction using Eq. (14)? Secondly, what are the relative merits
of the direct TD and asymptotic approaches? We will address these questions in Sections 3 and
4.

2.1. Conditions for asymptotic recovery of intrinsic fluorophore lifetimes

A basis for the theoretical work presented in this paper is the direct estimation of the intrin-
sic fluorophore lifetimes from the decay of TD fluorescence signals. There are two different
time scales involved in determining whether fluorophore lifetimes are revealed in the meas-
ured decay on the surface of the turbid medium. First is the intrinsic absorption time scale
τa = (vµa)

−1, which is the asymptotic decay time of the diffuse temporal response (DTR) at
the excitation wavelength, in the limit of homogenous semi-infinite media [24]. Second is the
asymptotic decay time,τD, of the DTR from a finite sized imaging medium, which includesthe
effect of boundaries. It is known that the presence of boundaries reduces the decay time [24,25],
so thatτD < τa. Since the DFTR is a convolution of the fluorescence decay with the DTR, two
scenarios emerge for a lifetime based analysis of TD fluorescence data from diffuse media:

• Strong condition: τn > τa. Sinceτa > τD, this guarantees that lifetimes can be measured
asymptotically, irrespective of tissue optical properties and medium boundaries. Further-
more, the multi-exponential model presented in Eqs. (11-12) is valid.
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• Weak condition: τa > τn > τD. Lifetimes can still be measured asymptotically, but the
reduced absorption model in Eq. (10) is no longer valid. The more general expression
for the weight function, viz., Eq. (5), should instead be used for both the direct TD and
asymptotic reconstructions.

The strong condition is easily satisfied for nanosecond lifetime fluorophores in biomedical ap-
plications (µa > 0.1cm−1 corresponds toτa < 0.5ns). In applications with small volumes as in
small animal imaging [12], with thicknesses of a few cm, the weak condition is almost always
satisfied. [A numerical evaluation ofτD for a range of tissue optical properties can be found in
Reference 13.] Note that for heterogenous media, it is knownthat the decay time is relatively
constant on the measurement surface [25], so that we can use the average, or bulk absorption in
the medium to defineτa, in evaluating the above conditions. The above two simple rules dictate
the condition for measuring intrinsic lifetimes from surface fluorescence decays for arbitrary
diffuse imaging media. Note that theaveragedecay time on the surface might itself change due
to factors that affect the amplitude of individual lifetimecomponents (e.g., thickness of autoflu-
orescence layers [31]), but the point is that individual lifetimes can still be recovered through
multi-exponential fits, under the above conditions.

3. Singular value analysis of the time domain weight function

In this section, we will present an optimization study of thenumber and location of time points
for a direct TD reconstruction. The general optimization ofsource-detector (S-D) pairs and
time points is a complex multi-dimensional problem since each S-D pair could ideally be as-
sociated with a different time gate. It is, however, reasonable to view the temporal points and
S-D arrangements as independent dimensions in the optimization, since for biomedical imaging
applications, the length scales involved are not too large and the correspondingly small varia-
tions in the temporal response along the measurement surface can be assumed not to affect the
results in a significant way. Therefore, in this paper, we consider a fixed S-D geometry and
focus on optimizing the temporal measurements for fluorescent tomography. The optimization
of S-D configuration has been discussed in previous works forCW fluorescence [29] and non-
fluorescent [30] tomography, using a singular value decomposition (SVD) analysis. Here, we
will apply SVD to the TD weight matrixWn defined in Eq. (10) for optimization of the time
points within the DFTR. SVD of a matrixWn yields the three orthogonal matrices,U,SandV,
defined as :Wn = USVT . The columns ofU andV represent the measurement space and im-
age space modes, and the diagonal matrixSof singular values determines the extent to which
these modes are coupled [29,30]. The number of singular values above a pre-determined noise
threshold is directly related to image resolution [30].

The weight matrix as defined in Eq. (10) was simulated for a diffusive slab medium of thick-
ness 2cm in the transmission geometry, with a S-D arrangement as shown in Fig. 2, with 21
sources and 29 detectors arranged in a honeycomb pattern (yielding 609 S-D measurement
pairs). The medium consisted of 3564 voxels of size 2mm3 (1mm× 1mm× 2mm). The tempo-
ral points were chosen to be 200psapart, corresponding to the typical minimum gate width in
time-gated detection techniques [10,13], and spread across a time range of 6ns. To begin with,
consider performing tomography using Eq. 14 with all S-D pairs and a single time point. What
is the location for this time point for an optimal reconstruction? To answer this question, the
singular value spectra forWn evaluated at various time points were calculated. The five spectra
with the highest values are plotted in Fig 3(a), and the number of singular values,Nσ , above
a chosen noise threshold of 10−14 is plotted in the inset of Fig. 3(b). It is seen that the spec-
trum for the time gate near the peak has the highest number of singular values above the noise
threshold. It is noteworthy that the slope of the singular value spectrum is lowest for the earliest
time, and increases for later times. This could be attributed to the narrower spatial sensitivity
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Fig. 2. Measurement geometry and arrangement of sources (*) and detectors (o) used for the
simulations. The medium was assumed to be a diffusive slab of thickness 2cm. The targets
used in the tomographic reconstructions are shown as gray shaded areas. (a) shows the top-
down view and laterally separated (perpendicular to the source-detectoraxis) targets and
(b) shows the side view, and targets located axially, i.e., along the source-detector axis.

profile sampled by the early arriving photons. However, the higher signal level (and the best
SNR, in the presence of shot noise) near the peak of the DFTR overcomes the faster decay of
the spectrum, resulting in a largerNσ near the peak. We thus conclude that tomography with a
single time gate is optimally performed with a time point near the peak of the DFTR. Note the
linearity of Nσ in the exponential decay region (red curve in the inset of Fig3(b)). This could
be attributed to the fact that the SVD spectra are also approximately exponential, as evident
from the log plot in Fig. 3(a), so that the intercept of diag(S) at fixed noise threshold depends
linearly on time.

Next, SVD was performed on the weight matrix calculated for all possible pairs of time
points, and the pair of time points with the highest number ofsingular values,Nσ , was deter-
mined. It turns out that one of the time points was again near the peak of the DFTR and the
other was located near the rise portion of the DFTR. In the same way, the location andNσ for
multiple combinations of time points were determined. In Figure 3(b),Nσ is plotted as a func-
tion of the number of time points used. It seen that the proportional increase inNσ diminishes
rapidly after the first 3 or 4 temporal measurements. Also shown in the inset in Fig 3(b) are the
first five optimal time points on a representative DFTR on the surface, which are located near
the initial portion of the DFTR before the beginning of the fluorescence decay. It was deter-
mined that additional time points were located near the decay portion of the DFTR and added
little to Nσ .

While the exact location of the optimal time points might varyslightly depending on the spe-
cific medium geometry, S-D arrangement and the location of the heterogeneity, it is generally
clear from the results in Fig. 3 that the most useful time points of the DFTR for a direct TD
reconstruction are located near the rise and peak portions.This result is consistent with Eq. 13,
which shows that the weight function is asymptotically factorized into a spatial and temporal
component so that multiple time points in the decay region are redundant for tomography. In
other words, a brute force direct TD approach isnot ideal for tomography with the long time
decay data. (When the lifetimes are widely separated, the shorter lived components may be
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Fig. 3. (a) Singular value spectra of the TD weight matrixWn [Eq. (10)] evaluated for a
single temporal measurement. The time point for which the individual spectra are plotted
are indicated as vertical lines in the inset, along with a representative DFTR.(b) Num-
ber of useful singular values,Nσ , as a function of the number of time points used in the
weight matrixWn. The weight matrix was optimized separately for each combination of
time points. The noise threshold for evaluatingNσ was 10−14 (horizontal dotted line in
panel (a)). The inset shows the optimal location of the five most significant time points on
the DFTR (filled circles) along withNσ for a single-time weight matrix as a function of the
chosen time point along the DFTR (dashed line, right Y-axis).

suppressed by reconstructing later delays [16].) Instead,the asymptotic approach based on a
derived data type, viz., the inverse laplace transform (i.e., multi-exponential fit) is more appro-
priate. In the next section, we will perform tomographic reconstructions with simulated data
using realistic noise levels to more quantitatively study the imaging performance of the direct
TD and asymptotic approaches.

4. Tomography using direct TD and asymptotic approaches

The results presented so far in the paper suggest that time domain fluorescence tomography
can be comprehensively performed in three simple steps. (1)Obtain theintrinsic fluorescence
lifetime(s) and the corresponding decay amplitude(s) fromthe asymptotic tail. (2) Reconstruct
the individual yield distributions for each decay component using the decay amplitudes for all
S-D pairs. (3) Reconstruct the yield distributions for eachlifetime component using a few time
points near the rise and the peak of the DFTR. These three steps reduce the computational
complexity involved in a brute-force reconstruction of a large temporal data set, while retaining
the most complete information possible from a TD experiment.

The question immediately arises as to the relative performance of the direct TD and asymp-
totic approaches. To address this, tomography was performed on simulated noisy data. The
simulations employed the same slab geometry used in the SVD analysis above, with two flu-
orescent inclusions positioned symmetrically with respect to the medium geometry and S-D
arrangement (Fig. 2) to remove any intrinsic bias due to the point spread function. The for-
ward data was simulated with a shot noise model, which is characteristic of photon counting
detection schemes, for three laterally placed inclusions (Fig. 2(a)) with center-to-center separa-
tions of 7mm, 5mm and 3mm. Also considered was the case where the inclusions had non-zero
axial separation of 4mm, with zero lateral separation (Fig.2(b)). The inclusions had distinct
lifetimes of 1ns and 1.5ns. The regularization was carried out using a Moore-Penrose inversion
algorithm, using the pre-calculated SVD matrices,U,S,V of the weight matrixWn. Denoting
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Fig. 4. Plot of the contrast-to-noise ratio (CNR) vs full-width-half-maximum (FWHM)
for reconstructions using CW (solid black), optimal direct TD using 4 most significant
time points near the rise and peak of the DFTR (red), and the asymptotic approach (blue
circles). The cross talk for the 1ns inclusion, viz., the false yield amplitudeat the location of
the 1ns lifetime component due the 1.5ns component is also shown for theTD (red dash-dot
line) and asymptotic (blue dashed line) cases. The simulations used the measurement setup
shown in Fig 2, with two 2mm3 fluorescent targets 7mm apart, having distinct lifetimes of
1ns and 1.5ns.

the measurement vector byY and the image byX, the inversion takes the following typical form
for under-determined problemsY = WnX:

X = VS(S2 +αλ I)−1UTy (16)

whereα = max{diag(WT
n Wn)} and the regularization parameterλ is typically between 10−5

and 10−3. Three different reconstructions were performed, namely,CW, direct TD, and asymp-
totic. The CW reconstructions were performed using the timeintegrated TD data. The direct
TD reconstructions used Eq. (14) with a set of 4 time points onthe rising edge of the DFTR,
following the SVD analysis results of Fig. 3. The asymptoticTD reconstruction was performed
using the amplitudes obtained from a multi-exponential analysis of the decay portion in Eq. 15.

The sensitivity of the reconstructed images to measurementnoise was quantified by sim-
ulating 100 data sets with noise for each S-D pair and time gate. The contrast-to-noise ratio
(CNR), and the full-width-half maximum (FWHM) were then calculated as a function ofλ .
The CNR is estimated as the ratio of the peak image intensity in a region of interest surround-
ing the known location of the inclusion, to the mean standarddeviation of the voxels in that
region. The FWHM was estimated as the cube-root of the total volume of the voxels within
half the peak intensity. In addition, for the lifetime basedTD and asymptotic reconstructions,
which provide separate yield reconstructionsη1 and η2 for the 1ns and 1.5ns lifetimes, the
cross-talk X was estimated to quantify the separability of the two inclusions based on lifetimes.
If Ω1 denotes a chosen region-of-interest around the known location of the 1ns inclusion, then
X1ns= max[η2(Ω1)]/max[η1(Ω1)]. The yield cross talk for the 1.5ns component was similarly
evaluated. The CNR vs FWHM plot is shown in Fig. 4 for the 1ns lifetime inclusion, for the
case with 7mm lateral separation between the inclusions. Itis clear that the TD reconstruction
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Fig. 5. X-Z slices of the 3-D Reconstructions of two targets with separationsof 7mm, 5mm
and 3mm, and with lifetimes of 1ns and 1.5ns, located transverse to the S-Daxis, using
CW (a-c), direct TD (d-f) and asymptotic (g-i) data sets. The measurement geometry used
is shown in Fig. 2. The true location of the inclusions (2mm3) in each case is indicated by
the gray shaded area. The reconstructions were regularized such that log10(CNR) is near
unity for all the cases. The images were generated by setting the red and green components
of the RGB colormap to be the scaled yield reconstructions for the 1ns and 1.5ns lifetime
components, respectively. This way, the cross-talk between the two components is easily
visualized as mixture of the two colors (thus, yellow indicates 100% crosstalk). Quantita-
tive plots of the yield along the X axis, at the fixed depth of the inclusions are shown for
separations of 7mm (j), 5mm (k) and 3mm (l) (CW - black line; direct TD - 1ns, dashed-dot
red and 1.5ns, dashed-dot green; asymptotic - 1ns, solid red and 1.5ns, solid green.)
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Fig. 6. Reconstructions for targets located axially, i.e., along the S-D axis, as shown in Fig.
2(b). The X-Z slice of the 3-D reconstructions are shown for (a) CW (b) lifetime-based
direct TD and (c) lifetime-based asymptotic reconstructions. The colormap scheme used is
the same as in Fig. 5. (d) shows quantitative plots of the yield along the depth Z, for the
fixed X location of the inclusions. (CW - black line; direct TD - 1ns, dashed-dot red and
1.5ns, dashed-dot green; asymptotic - 1ns, solid red and 1.5ns, solid green.)

shows a dramatic improvement in the CNR and FWHM over the asymptotic reconstruction, and
an improvement over the resolution of the CW case. The CNR improvement is evidently due to
the better SNR of the peak portion of the DFTR compared to the asymptotic tail. The FWHM
improvement of the TD over CW is due to the tomographic separation of the yield distributions
for the lifetime components. Thus, for fixed CNR, the lifetime based TD reconstruction will
have superior resolution compared to the asymptotic and CW reconstructions. However, the
cross-talk, (which is the reconstructed amplitude of the 1.5ns inclusion at the location of the
1ns inclusion) is significantly higher for TD than the asymptotic case, and is attributable to the
non-diagonal nature of the TD portion of the forward problemin Eq. (14). We note that the
crosstalk for the asymptotic approach will depend on the separability of the lifetimes from the
multi-exponential fits of raw experimental data, an aspect that will be explored in future work.

The effect of the crosstalk can be more clearly seen in the reconstructed tomographic im-
ages shown in Fig. 5, where the X-Z slices of the 3-D reconstructions for all three data sets
and separations are displayed. Also shown are the plots of the yield at a fixed depth (Z) where
the yield is maximum. It should be noted that the regularization λ was not identical for all the
reconstructions but was rather determined by the conditionthat log10(CNR) was near 1. This
is necessary to properly account for the difference in the noise characteristics of the different
methods. (For example, CW has the best SNR, and should thus bethe least regularized.) To
visualize crosstalk easily, the yield images for the 1ns and1.5ns components for the TD and
asymptotic approaches were assigned red and green colors inan RGB colormap of a single
image. The degree of crosstalk is thus revealed as a mixture of these two colors (e.g., yellow
implies 100% crosstalk). Thus, CW reconstructions have no lifetime information so that they
are shaded in yellow. It is clear from Fig. 5 that the TD reconstruction has superior resolution
but significantly more cross-talk than the asymptotic reconstructions, as can also be seen in
the intensity plots in the bottom panel. For small target separations, the cross talk of the TD
method proves detrimental to its accuracy, whereas the asymptotic case recovers the localiza-
tions accurately even for 3mm separation. Thus it can be saidthat the direct TD approach using
optimal time points provides more precise (better-resolved) reconstructions, and is useful when
the targets are well separated, whereas the asymptotic reconstructions are more accurate but
less precise (less-resolved). In Figure 6, the reconstructions are shown with the targets located
axially, i.e., along the S-D axis. The advantage of the lifetime based asymptotic reconstruction
is even more evident in this case, as the localizations of thetwo lifetimes are not reproduced
either for the CW or the direct TD reconstructions.
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Fig. 7. Illustration of the enhancement of direct TD reconstructions in thepresence of life-
time contrast. The colormap scheme used is direct and reflects the actualreconstructed
yield, in contrast to that used in Figs (5) and (6). (a) Yield reconstructions with two in-
clusions separated by 7mm, with both having the same lifetime of 1ns and (b-c) yield
reconstructions for inclusions with distinct lifetimes of 1ns and 1.5ns. (d)1-D plot of the
reconstructed yield along the X axis at the actual depth of the inclusions, for no lifetime
contrast (black) and with the inclusions having 1ns (red) and 1.5ns (green) lifetimes. (e)
Dependence of cross talk for the direct TD reconstructions on the meanlifetime. The two
inclusions had a fixed lifetime separation of 0.5ns, while the mean lifetime wasvaried
between 0.75ns and 3.25ns.

Although characterized by cross-talk, the presence of lifetime contrast enhances the images
reconstructed using direct TD data. To delineate this effect clearly, Fig. 7 shows a comparison
of the reconstructions of the two laterally placed targets using the direct TD approach, with
and without lifetime contrast between the targets. The effect of lifetime contrast on the direct
TD reconstruction is clearly seen as a significant reductionin the point-spread-function of the
reconstructed yield distributions for the two lifetimes. Of course, this effect will depend on
the difference between the fluorophore lifetimes and the diffuse propagation timeτD, which
is near 0.4ns for the present simulation. (corresponding toµa = 0.1). As the mean lifetime
becomes much larger thanτD, the cross talk will also increase, diminishing the separability
of the corresponding yield distributions. This is due to thefact that the elements of the first
row of the TD weight matrix in Eq. (14) are almost identical for the early time points, when
τn >> τD. To study this quantitatively, the simulations in Fig. 7 (b)and (c) were repeated for a
range of mean lifetimes, with fixed lifetime separation of 0.5ns and the crosstalk was estimated
for each case. In Fig. 7(e), the cross talk of the direct TD approach is plotted as a function of
the mean lifetime of the inclusions, indicating the large range of lifetimes for which direct TD
reconstructions can benefit from lifetime contrast.

5. Conclusions

We have presented a theoretical formalism for TD fluorescence tomography with turbid media
that allows a lifetime-based reconstruction of yield distributions using the entire TD data. Be-
sides providing a comprehensive understanding of TD fluorescence signals from diffuse media,
a key advance of this work from the previously presented asymptotic lifetime based tomog-
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raphy is an algorithm for lifetime based tomographic separation using the peak and rise por-
tions of the temporal diffuse fluorescence response. The formalism is generally valid provided
the intrinsic fluorescence lifetimes are revealed in the long time decay, a condition well satis-
fied [11–13] given the typical optical response times of diffuse tissue and fluorophore lifetimes
used in molecular imaging. This is important since the measured average lifetime on the sur-
face can by itself provide useful diagnostic information, without the need for tomography. This
shows the potential for lifetime sensing in diagnostic imaging and extends the application of
this work to a wide range of biomedical imaging problems.

The results presented here can be viewed as an inevitable consequence of the long lifetime
condition: The longer lived fluorescence decay effectivelyconvolves over the intrinsic diffuse
material response, resulting in a decay tail that is separated in space and time. This implies that
for tomography with the long time data, a direct use of multiple time points in the decay portion
is redundant. The optimal approach is to perform tomographyusing the amplitudes recovered
from multi-exponential fits. This result was shown to be consistent with a SVD analysis of the
time-dependent Born weight functions, which showed that the optimal time points to use in a
direct TD reconstruction are located near the peak and rise portions of the DFTR.

Tomographic reconstructions with simulated noisy data also revealed the relative merits of
optimized direct TD and the asymptotic approaches. It was found that the direct TD and asymp-
totic approaches yield complementary information: The asymptotic approach provides superior
localization ability due to minimal cross-talk between theimages for multiple lifetimes, while
the optimal direct TD reconstructions yield better resolution due to superior SNR near the peak
of the DFTR. Thus, when no lifetime contrast is present in themedium, the direct TD analysis
should be the method of choice. For targets located along theS-D axis, it was shown that the
asymptotic analysis is superior to both direct TD and CW in its ability to accurately localize the
targets, provided they have different lifetimes. Axially located targets could occur for example
in small animal brain imaging, where transillumination maybe the preferred geometry when
depth resolution along the various brain regions is desired.

The simulations presented here considered two distinct lifetime inclusions placed both lat-
eral and axial to the measurement axis. Although simplistic, this example has highlighted key
aspects of TD fluorescence tomography with lifetime contrast that can potentially be extended
to more complicated spatial distributions of lifetimes. This work is also based on the assump-
tion that lifetimes present in the medium are few and discrete, or at least can be described as
sharp distributions centered around a mean lifetime. In themore general case when lifetimes
are broadly distributed, a numerical inverse Laplace transform can be used to recover ampli-
tude distributions [26]. The simulation analysis presented here was not meant to optimize for
any particular TD detection technique (e.g., wide-field time gated, time correlated detection
schemes), but was rather an attempt to explore the information content in a TD signal and to
provide a recipe for an optimal approach for TD fluorescence tomography with turbid media.
The purpose of the numerical simulations was also not to makea statement about the abso-
lute resolution achievable by TD methods. This quantity canbe optimized using better S-D
arrangement and adjusting actual experimental conditions. Indeed, sub-mm resolution has re-
cently been demonstrated using CW measurements [3]. Such optimization will enhance the
resolution of all three approaches viz., CW, direct TD and asymptotic, so that the main results
obtained here will not be affected.

In future work, we will attempt to extend the formalism developed here to a hybrid model that
incorporates both the direct TD and the asymptotic approaches into a single inverse problem in
a self-consistent fashion. This hybrid TD-asymptotic approach is expected to provide optimal
localization and resolution. It should be reiterated that although a diffusive slab model was
assumed for the simulations, the formalism developed here can readily incorporate Green’s
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functions calculated as solutions of either the diffusion or transport equations, as appropriate,
for heterogenous media with complex boundaries. We are currently engaged in applying the
formalism developed here to imaging complex shaped mouse phantoms and mouse models of
disease.

Optical molecular imaging can immensely benefit from the useof biochemical reporter
probes that are not merely disease specific, but also providespecific molecular signatures such
as spectral and lifetime shifts that help isolate the disease from background tissue [2]. The
unique advantages of time domain technology as explored in this work strongly motivates the
development of fluorescent contrast agents that exhibit target specific lifetime shift upon bind-
ing. We also hope that this work will provide useful guidelines for biological imaging using
time domain fluorescence tomography.

Acknowledgments

This work was supported by National Institutes of Health Grants EB000768, AG026240 and
P41-RR14075.

#75807 - $15.00 USD Received 6 October 2006; revised 27 November 2006; accepted 29 November 2006

(C) 2006 OSA 11 December 2006 / Vol. 14,  No. 25 / OPTICS EXPRESS  12270


