J Cereb Blood Flow Metab. 2005 Nov;25(11):1528-47 doi: 10.1038/sj.jcbfm.9600146.

Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B

Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, Holt DP, Meltzer CC, DeKosky ST, Mathis CA.

Abstract

A valid quantitative imaging method for the measurement of amyloid deposition in humans could improve Alzheimer's disease (AD) diagnosis and antiamyloid therapy assessment. Our group developed Pittsburgh Compound-B (PIB), an amyloid-binding radiotracer, for positron emission tomography (PET). The current study was aimed to further validate PIB PET through quantitative imaging (arterial input) and inclusion of subjects with mild cognitive impairment (MCI). Pittsburgh Compound-B studies were performed in five AD, five MCI, and five control subjects and five subjects were retested within 20 days. Magnetic resonance images were acquired for partial volume correction and region-of-interest definition (e.g., posterior cingulate: PCG; cerebellum: CER). Data were analyzed using compartmental and graphical approaches. Regional distribution volume (DV) values were normalized to the reference region (CER) to yield DV ratios (DVRs). Good agreement was observed between compartmental and Logan DVR values (e.g., PCG: r=0.89, slope=0.91); the Logan results were less variable. Nonspecific PIB retention was similar across subjects (n=15, Logan CER DV: 3.63+/-0.48). Greater retention was observed in AD cortical areas, relative to controls (P

PMID: 15944649