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Detection and Hypothesis testing

2 Alternatives discrimination problem

H1: There is an ‘effect’
H0: There is no ‘effect’

Example: H1: Average IQ of Group1 subjects < Group2 subjects
H0: Average IQ of Group1 subjects = Group2 subjects

Given data we wish to probabilistically test out the hypotheses

Frequentist: Is p(data|H0) < 0.05 (or anything else arbitrary) ?

Bayesian: How do p(H0|data) and p(H1|data) compare?
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Detection and Hypothesis testing

Frequentist and Bayesian approaches

Frequentist - When H0 is true, what is the probability (p value) that
we’ll see the data that we have i.e p(data|H0)?
Bayesian - Given the data we have, what is the probability that H0 is
true i.e p(H0|data)? Which is more likely: H0 or H1?
ROC curve - Hit (no type II error) probability versus False Alarm
(type I error) probability
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Some distributions

Normal distribution

Figure: p(χ) = 1
σ
√

2π
e

(χ−µ)2

2σ2 , Normal distributions are good models of most real

life data where clustering around the average happens, example: Adult human
height
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Some distributions

‘Alien’ example

H1: A is an alien
H0: A is a human being

Given: Adult human height is normally distributed with µ = 170cm
and σ = 10 cm

A is 195 cm tall (Our data)

Frequentist: Given H0, the height of A is normally distributed

p(χ > µ+ 2σ) < 0.05 ⇒ With p < 0.05, H0 is false. Is A is an alien?

What if all aliens were shorter than 100cm?
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Some distributions

Frequentist versus Bayesian

Clinical test to screen school children for a certain disease. The test is
96% accurate. That is, if the test is administered on a population of
children with disease (H1), it tests +ve 96% of the time. Similarly if we
test a population of children with no disease (H0), it tests -ve 96%
percent of the time.

Is this a good test?

If a random school child tests positive:
1 What is the conclusion based on the frequentist approach with a

p < 0.05 threshold?
2 What is the probability that he/she actually has the disease?

Bayes Rule: p(H0|data) ∝ p(data|H0)p(H0)
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The Universal Frequentist Recipe
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The Universal Frequentist Recipe

Universal Frequentist Recipe

ALL univariate statistical tests entail the following:

1 Construct H0 and H1, could be competing models

2 Calculate a statistic, a scalar (T ), that summarizes the effect you are
trying to capture (example: difference in mean IQs of 2 groups)

3 Determine the distribution of T when H0 is true (Here is where
usually many assumptions come in)

4 If p(T |H0) < 0.05 or any other ad hoc threshold, reject H0 (This
doesn’t necessarily mean we have evidence for H1)
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The Universal Frequentist Recipe

Important properties of the normal distribution

Linear combinations of IID normal variables is a normal variable ⇒
Average of IID normal variables is normal

Sum of squares of k zero mean normal normal variables is a χ2

variable with k degrees of freedom

Ratio of a zero mean normal variable and square root of a χ2

variable (with k df)is a t variable with k degrees of freedom

t =
χ√
S/k

(1)

Ratio of two independent χ2 variables is an F variable

F =
S1/k1

S2/k2
(2)

F has degrees of freedom k1 and k2
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The Universal Frequentist Recipe

χ2 distribution

S = x2
1 + x2

2 + · · ·+ x2
k

Figure: Sum of squares Indpendent and Identically distributed normal
variables with mean 0 and variance 1
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The Universal Frequentist Recipe

t distribution

Figure: Ratio of zero mean normal and square root of a χ2 distibution
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The Universal Frequentist Recipe

F distribution

Figure: Ratio of 2 χ2 distributions

Hari (BU) WhyNHow Stats February 7, 2013 13 / 64



Common traditional test statistics
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Common traditional test statistics

One sample t-test

Testing for the average of a normal population to have a certain
mean µ0

Example: sample of 10 subjects
H1: The average IQ of TDs is different from 100
H0: The average IQ of TDs is 100

IQs = 87, 110, 93, 99, 75, 102, 90, 83, 100, 70

x̄ =
x1 + x2 + · · ·+ xk

k
(3)

S =
1

k − 1

k∑
1

(xi − x̄)2 (4)

t =
x̄ − 100√

S/k
(5)

t = −2.3, p = 0.047 ⇒ H0 is rejected
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Common traditional test statistics

Two (independent) sample t-test

Testing for the means of 2 independent populations to be equal

Example: sample of 10 subjects in each group (need not be same
number)
H1: The average IQ of TDs is different from ASDs
H0: The average IQ of TDs is same as ASDs

TDs = 87, 110, 93, 99, 75, 102, 90, 83, 100, 70
ASDs = 77, 81, 64,100, 84, 72, 69, 90, 68, 70

x̄td , x̄asd =
x1 + x2 + · · ·+ xk

k
(6)

Std , Sasd =
1

k − 1

k∑
1

(xi − x̄)2 (7)

t =
x̄td − x̄asd√

Sasd/kasd + Std/ktd
(8)

H1 can be one-sided: IQ of TDs > IQ of ASD
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Common traditional test statistics

Paired t-test

Testing for changes between conditions in the same block (subject)

Example: sample of 10 TDs at ages 5 and 15
H1: IQ increases when you grow to 15 from 5
H0: IQ does not change between ages 5 and 15

15 years = 87, 110, 93, 99, 75, 102, 90, 83, 100, 70
5 years = 68, 90, 63, 80, 70, 70, 88, 83, 90, 60

x̄ =
(x15y

1 − x5y
1 ) + (x15y

2 − x5y
2 ) + · · ·+ (x15y

k − x5y
k )

k
(9)

S =
1

k − 1

k∑
1

(x15y
i − x5y

i − x̄)2 (10)

t =
x̄√
S

(11)

More ‘sensitive’ than an unpaired (H0: IQs of 5 and 15 year olds is
the same on an average), Unpaired with this data ⇒ block effects!
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Common traditional test statistics

Summary of basic tests

One sample t-test: IID normal data, test for mean being a certain
value

2 sample t-test: IID normal data, test for means being equal, If
variance unequal, then its called a Behrens-Fisher problem

Paired t-test: IID normal differences, test for paired
differences/changes being 0 or not 0.

Depending on what H1 is, the test is one-sided or two sided

We know the significance under the null hypothesis ⇒ We dont know
the sensitivity, we only guarentee a specificity

To know the sensitivity, (i.e) the probability that we detect an ‘effect’
when there is an effect, we need to analyze distributions of data
under H1
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ANOVA & The General Linear Model (GLM) perspective

ANOVA basics

Observed data (y) is modeled as coming from a normal population

Conditional mean of y is modeled as a linear function of explanatory
variables (x)

H1: y depends on all the variables in x

E (y |x) = βx
y = βx + ε

H0: y depends only on x0 ⊂ x

E (y |x0) = βx0

The 2 models of the data are compared in the least squared sense to
generate an F-statistic
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ANOVA & The General Linear Model (GLM) perspective

Example - continuous factors

A study with n subjects of different ages and heights (at one time)

H1: Occipital alpha power depends on age and height
H0: Occipital alpha power depends only on height

For each subject the alpha power yi is measured

H1 : yi = (ai , hi , 1)(βa, βh, βµ)T + εi
H0 : yi = (hi , 1)(βh, βµ)T + εi

S1,0 =
∑n

i=1 εi
2 is the model error for H1 and H0

Fage =
(S0 − S1)/(k0 − k1)

S1/k1

Under H0 the ratio has an F-distribution

If p(F > Fage |H0) < 0.05, then H0 is rejected and age is said to have
a main effect on alpha power
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ANOVA & The General Linear Model (GLM) perspective

One way ANOVA with continuous explanatory variable:
Correlation

Does IQ depend on age?

Same as asking ‘Is IQ correlated with AGE’?

10 subjects:

IQ (y)= 87, 110, 93, 99, 75, 102, 90, 83, 100, 70
AGE (x)= 9,15,9,10,10,12,8,10,11,7

y = µ+ βx + ε versus y = µ+ ε : Is one significantly better than the
other

F - test would give us the answer, p = 0.0095

Alternate way to test the significance of Correlation (ρ): Fisher RA,
1915: When x and y are jointly normal, 0.5log 1+ρ

1−ρ is normally

distributed with mean 0.5log 1+ρ0
1−ρ0

and variance 1
N−3 , where ρ0 is the

actual population correlation
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ANOVA & The General Linear Model (GLM) perspective

Linear and non-linear predictability

Figure: Correlation just says y is linearly predictable from x . Lower correlation ⇒
Higher prediction error. Perfect dependence could result in zero correlation if the
dependence is non-linear.
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ANOVA & The General Linear Model (GLM) perspective

Outliers and bad models

Figure: All the 4 cases have the exact same correlation coefficient of about 0.8.
One should plot and look at the curves. A log-linear model might fit better.
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ANOVA & The General Linear Model (GLM) perspective

Design Matrix - Model specification


y1

y2

...
yn

 =


a1 h1 1
a2 h1 1
...

...
an hn 1


 βa

βh
βµ

 +


ε1

ε2

...
εn


Y = (a, h, 1)β + ε
Y = Xβ + ε

X is called the design matrix

Y = (y1, y2, . . . yn)T ∈ Rn

The projection length (S0 − S1) of Y onto the subspace spanned by a
is the variance of Y that is explained by age (1 degree of freedom)

The size of the orthogonal projection (S1) is the model error (n − 1
degrees of freedom)

Thus F will be small if a does not account for the variance in Y
significantly
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ANOVA & The General Linear Model (GLM) perspective

Example - Categorical Factors

Study of 20 subjects divided into 2 groups



y1

y2

...

...
yn−1

yn


=



1 0
1 0
...

...
...

...
0 1
0 1


 β1

β2

 +



ε1

ε2

...

...
εn−1

εn




y1

y2

...

...
yn−1

yn


=



1 1
1 1
...

...
...

...
−1 1
−1 1


 β1

β2

 +



ε1

ε2

...

...
εn−1

εn
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ANOVA & The General Linear Model (GLM) perspective

In general

Y = Xβ + ε = ( G1 H1 G0 H0 )


γ1

κ1

γ0

κ0

+ ε

All design using linear models and assuming a normal distribution
with common error covariances are an instance of the above

G1 and H1 are interesting categorical and continuous factors
respectively

G0 and H0 are uninteresting categorical and continuous factors

The null model contains only the partition with G0 and H0

Experiment design is equivalent to deciding on what the design
matrix is
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ANOVA & The General Linear Model (GLM) perspective Some design matrices

GLM with 1 factor (group) → One-Way ANOVA with 2
levels

Figure: The data y is explained by 1 factor, namely ‘group’ x = 0 or 1 denoting
Group1 or Group2 for example. Does regressing y as a linear function of x help
explain the variance in y better than when not modeled as a function of x?
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ANOVA & The General Linear Model (GLM) perspective Some design matrices

F distribution - A reminder

Figure: Distribution of sum of squared mean-zero normal variables
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ANOVA & The General Linear Model (GLM) perspective Some design matrices

Design matrix for 1 way 3 level ANOVA with 30 subjects

Figure: One way 3 level ANOVA has 3 experimental effects: 2 Group Differences
and 1 Overall Mean
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ANOVA & The General Linear Model (GLM) perspective Some design matrices

Design matrix - cell mode

Figure: Equivalent design matrix as 2 group differences and 1 overall mean: 3
different group means
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ANOVA & The General Linear Model (GLM) perspective Some design matrices

Design matrix - 2 way ANOVA: 1 categorical and 1
continuous factor

Figure: Design matrix for 30 subjects divided into 3 groups of 10 with AGE as a
covariate/factor. What is the NULL model? - A subset of the full design matrix
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ANOVA & The General Linear Model (GLM) perspective Some design matrices

Design matrix - 1 way repeated measures ANOVA with 2
conditions

Figure: 1 way ANOVA with block (subject) effects, 20 subjects each measured
in 2 conditions: First 2 columns are the cells corresponding to the conditions and
then other 10 model effects. What is the NULL model?
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ANOVA & The General Linear Model (GLM) perspective Contrasts and Interactions

2 Groups, 2 Conditions: 2 way ANOVA with interactions

Figure: 2 way ANOVA with block (subject) effects, 20 subjects each measured
in 2 conditions, divided into 2 groups: First 4 columns are the cells corresponding
to every condition-group pair: (cond1, grp1), (cond1, grp2), (cond2,grp1) and
(cond2,group2). How do we assess the main effect of group?
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ANOVA & The General Linear Model (GLM) perspective Contrasts and Interactions

Contrast for main effect of group

The cells for the first 4 colums are (cond1, grp1), (cond1, grp2),
(cond2,grp1) and (cond2,group2)

Let c = (1, -1, 1, -1, 0, . . ., 0)T : The data in the subspace of Xc
represent the variance because of group differences averaging over
conditions

Contrast matrix for main effect of group
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ANOVA & The General Linear Model (GLM) perspective Contrasts and Interactions

Contrast for main effect of condition

The cells for the first 4 colums are (cond1, grp1), (cond1, grp2),
(cond2,grp1) and (cond2,group2)

Let c = (1, 1, -1, -1, 0, . . ., 0)T : The data in the subspace of Xc
represent the variance because of condition differences averaging
over groups

Contrast matrix for main effect of conditions
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ANOVA & The General Linear Model (GLM) perspective Contrasts and Interactions

Interactions

The effect of one factor may depend on the level of another factor

Example: Sleep hours modeled as a function of amount of exercise
and weight of a person: Regular exercise increases the amount of
sleep more for heavier people than for lighter people

For our 2 group - 2 condition example: There may be group
differences that are condition independent (main effects) but there
might be group differences that occur only in one condition
(interaction)

If x and y are the factors, an interaction is a dependance on xy
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ANOVA & The General Linear Model (GLM) perspective Contrasts and Interactions

Contrast for interaction between group and condition

The cells for the first 4 colums are (cond1, grp1), (cond1, grp2),
(cond2,grp1) and (cond2,group2)

Let c = (1, -1, -1, 1, 0, . . ., 0)T : The data in the subspace of Xc
represents the interaction Difference of differences

Contrast matrix for Interaction
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ANOVA & The General Linear Model (GLM) perspective Contrasts and Interactions

Contrast for overall mean

The cells for the first 4 colums are (cond1, grp1), (cond1, grp2),
(cond2,grp1) and (cond2,group2)

Let c = (1, 1, 1, 1, 0, . . ., 0)T : The data in the subspace of Xc
represents the effects common to each of the cells

Contrast matrix for overall mean
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ANOVA & The General Linear Model (GLM) perspective Contrasts and Interactions

With experimental effects along the colums of the design
matrix

Column 1 is group difference, column 2 is condition

Column 3: interaction (Note that this is column1 (dot) column2

Column 4: Overall mean
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Non-parametric approaches

Universal Frequentist Recipe

ALL univariate statistical tests entail the following:

1 Construct H0 and H1, could be competing models

2 Calculate a statistic, a scalar (T ), that summarizes the effect you are
trying to capture (example: difference in mean IQs of 2 groups)

3 Determine the distribution of T when H0 is true (Here is where
usually many assumptions come in)

4 If p(T |H0) < 0.05 or any other ad hoc threshold, reject H0 (This
doesn’t necessarily mean we have evidence for H1)
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Non-parametric approaches

Permutation tests: Example 1

IQ of 2 groups of 10 subjects each: Use our recipe

Let T = mean IQ of group 1 - mean IQ of group 2

Under H0, we want to know what the distribution of T is

Non-parametric approach: Under H0, group does not have any effect
on data ⇒ We can assign group to subjects randomly

Thus we can get many groupings, here we can have up to(20
10

)
> 180, 000 permutations where the subjects from the 2 groups

are mixed

For each of these permutations we can get a Tperm ⇒ We have a
distribution for T under H0

Is this generalizable to the population or applicable only to the cohort?
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Non-parametric approaches

Permutation tests: Example 2

10 subjects who are politicians or have an IQ score less than 80 or both
H1: Politicians are more likely to have IQ < 80
H0: They are unrelated attributes

The data is not normally distributed, its categorical

Let x1 = (0 1 1 0 0 0 1 1 1 1) and x2 = (1 0 1 0 0 0 1 1 1 1) denote
politician or not and IQ less than 80 or not respectively for the 10
subjects

d = norm(x1 − x2) is a good measure of the conjunction between the
2 attributes, d =

√
2 here

Permute x1 or x2 values randomly and get a distribution for d and
find p(d ≤

√
2)
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Multiple Comparisons and Topological Inference

MCP

H1: Coin is biased
H0: Coin is unbiased

Test: Toss coin 10 times, if Head or Tail shows up 9 or more times,
reject H0 (p(9 or more heads/H0) ≈ 0.02)

This means if we repeat the test 100 times we’ll get 9 or more heads
only 2 times on an average

What if we have a million coins and test each of them with this test?

On an average 20,000 coins will turn head more than 9 times even
when non of them are biased ⇒ We have a family wise error which
we must correct for
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Multiple Comparisons and Topological Inference

Why should we worry about the MCP

Figure: Of the order of 10,000 sources ⇒ Large number of correlated tests

Hari (BU) WhyNHow Stats February 7, 2013 47 / 64



Multiple Comparisons and Topological Inference

Why should we worry about the MCP

Figure: 1000 time bins × 50 frequency bins ⇒ Large number of correlated tests
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Multiple Comparisons and Topological Inference

Multiple testing corrections

For discrete tests (example: multiple end point drug trials):
Non-parametric family-wise testing or False Discovery Rate (FDR)
approaches

For data sets with an inherent topology (example: Time courses,
whole brain signals, time-frequency maps): Random field theory or
Non-parametric topological inference tests
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Multiple Comparisons and Topological Inference

Topological Inference

We have a topological map of statistics (mean power, t-values,
F-values, TF coherence etc.)

Unlikely excursions under H0 of this map should be identified as
evidence for H1
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Multiple Comparisons and Topological Inference

How to set thresholds?

Given a statistical map (example t-test at each source)

Figure: Simulated: signal+noise

Figure: Thresholding at α < 0.05 at each voxel ⇒ Lots of significant voxels
outside of true signal

Figure: Bonferroni thresholding at FWE < 0.05 at each voxel ⇒ Too conservative
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Multiple Comparisons and Topological Inference

Familywise Error Rate (FWE)

Each observation is a topological map (TF maps, Scalp power, Whole
brain response etc.)

Example: Wavelet coherence data between STG and rIFG during a
Roving paradigm

10 ASD and 10 Control Subjects

No apriori hypothesis about any particular frequency band or time
frame:
H0: There are no differences in coherence between groups
anywhere in the TF plane

The hypothesis is not about any TF bin ⇒ inference is also about the
whole map

p-value is a familywise p-value
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Multiple Comparisons and Topological Inference

RFT versus Bonferroni correction

Example: 100 × 100 images: Bonferroni Correction too conservative when
smooth
RFT models error fields (our ε data) as a Gaussian random fields

Figure: Null field with no spatial
covariance → 10,000 elements

Figure: Smooth null field → 100
elements
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Multiple Comparisons and Topological Inference

Height thresholding

For an ad hoc threshold (u), we want to find the familywise p-value of
each blob that we see. Example: Under H0, what is the probability
that you’ll find a peak > u anywhere) ? Can be answered using RFT or
permutations/other non-parametric

Figure: Thresholded at u = 2.5 Figure: Thresholded at u = 3
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Multiple Comparisons and Topological Inference

RFT - height threshold (peak level inference)

Assumptions:

1 Error fields conform to a reasonable lattice approximation of a gaussian RF

2 The covariance of the error fields is continuous and differentiable (need not be
spatially stationary)

Once we have established that

Euler charecteristic (EC ): Property of a map upon thresholding
(#blobs - #holes)

For large thresholds p(peak > u|H0) = E (EC |H0)

E (EC ) have for random z-fields, t-fields or F-fields

E (EC ) = R(4ln2)(2π)−3/2ze(−z2/2)

The only data dependent parameter for calculating E (EC ) is the
smoothness (FWHM) (specified through R) at each voxel or TF
element
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Multiple Comparisons and Topological Inference

RFT - Cluster extent threshold

Like sharp large peaks, wide plateaus (albeit not so tall) are also
unlikely excursions under H0

Inference can be made about the extent of a cluster above an ad hoc
threshold u

Under H0, what is the probability that you’ll find a cluster/blob
containing more than k voxels above a threshold u

This can also be calculated from from RFT with only the smoothness
being specified from the data
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Multiple Comparisons and Topological Inference

Permutation test

Procedure to determine p-value for height and cluster extent above a
threshold u

1 Generate a large number N of random permutations of data (example
permultations of ‘group’ or ‘condition’)

2 The proportion of permutations having a peak > u anywhere is the
p-value for the height = u

3 The proportion of permutations having clusters > u containing k or
more voxels anywhere gives the cluster extent p-values

4 A hybrid measure of ‘exceedence mass’ (m) could be calculated as the
mass of the blobs exceeding u: Sensitive to both sharp tall peaks and
flat wide plateaus
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False Discovery rates

False Discovery Rate procedure

New approach to multiple testing

Instead of controlling for FWE or p-values, control for the the ‘False
Discovery Rate’

FDR = E(proportion of rejected null hypotheses that are falsely
rejected)

When we test for m null hypotheses of which m0 are true

#Accepted #Rejected Total

# True U V m0

# False T S m −m0

Total m - R R m

FDR = q-value = E( V
V+S ) = E(VR )
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False Discovery rates

FDR

Figure: Setting FDR is not as conservative as bonferroni, we accept some false
discoveries anyway
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Miscellaneous Issues

Model mispecification and assumptions

Non-normality of data: EEG power, Coherence → Transformations
can be applied: log(power), arctanh(coherence) or consider only
‘differences’

Estimation bias: Coherence is biased on the number of trials (n) i.e.
E (coherence) = TrueCoherence + 1

2n−2 → When comparing groups or
conditions with unequal number of trials, corrections have to be
applied

Variance of data different between groups of conditions →
Hierarchical models with partitioned errors

Correlated measurements → Greenhouse - Geisser correction

Correlated factors in ANOVA (comparing kids with autism to adult
controls) → Bad design, sorry!
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Miscellaneous Issues

Generating surrogate data

Surrogate data may be generated at times to non-parametrically
derive the null distributions of various statistics

Coherence between 2 channels: Jumble up trials of 1 channel and
compute coherence between 2 channels (tricky for event related
design)

‘Empty room’ or ‘Cap in electrolyte bath’ data for MEG and EEG to
derive null distrinutions

Realistic simulations from the null such as white noise filtered and
processed in the same way as the data
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Miscellaneous Issues
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