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Quantifying tissue iron concentration in vivo is instrumental for understanding the role of iron in physiology
and in neurological diseases associated with abnormal iron distribution. Herein, we use recently-developed
Quantitative Susceptibility Mapping (QSM) methodology to estimate the tissue magnetic susceptibility
based on MRI signal phase. To investigate the effect of different regularization choices, we implement and
compare ℓ1 and ℓ2 norm regularized QSM algorithms. These regularized approaches solve for the underlying
magnetic susceptibility distribution, a sensitive measure of the tissue iron concentration, that gives rise to the
observed signal phase. Regularized QSM methodology also involves a pre-processing step that removes, by
dipole fitting, unwanted background phase effects due to bulk susceptibility variations between air and tissue
and requires data acquisition only at a single field strength. For validation, performances of the two QSM
methods were measured against published estimates of regional brain iron from postmortem and in vivo
data. The in vivo comparison was based on data previously acquired using Field-Dependent Relaxation
Rate Increase (FDRI), an estimate of MRI relaxivity enhancement due to increased main magnetic field
strength, requiring data acquired at two different field strengths. The QSM analysis was based on susceptibility-
weighted images acquired at 1.5 T, whereas FDRI analysis used Multi-Shot Echo-Planar Spin Echo images
collected at 1.5 T and 3.0 T. Both datasets were collected in the same healthy young and elderly adults. The in
vivo estimates of regional iron concentration comported well with published postmortem measurements; both
QSM approaches yielded the same rank ordering of iron concentration by brain structure, with the lowest in
white matter and the highest in globus pallidus. Further validation was provided by comparison of the in vivo
measurements, ℓ1-regularizedQSMversus FDRI and ℓ2-regularizedQSMversus FDRI, which again yielded perfect
rank ordering of iron by brain structure. Thefinalmeans of validationwas to assess howwell each in vivomethod
detected known age-related differences in regional iron concentrationsmeasured in the same young and elderly
healthy adults. Both QSMmethods and FDRI were consistent in identifying higher iron concentrations in striatal
and brain stem ROIs (i.e., caudate nucleus, putamen, globus pallidus, red nucleus, and substantia nigra) in the
older than in the young group. The two QSM methods appeared more sensitive in detecting age differences in
brain stem structures as they revealed differences of much higher statistical significance between the young
and elderly groups than did FDRI. However, QSM values are influenced by factors such as the myelin content,
whereas FDRI is a more specific indicator of iron content. Hence, FDRI demonstrated higher specificity to iron
yet yielded noisier data despite longer scan times and lower spatial resolution than QSM. The robustness, prac-
ticality, and demonstrated ability of predicting the change in iron deposition in adult aging suggest that
regularized QSM algorithms using single-field-strength data are possible alternatives to tissue iron estimation
requiring two field strengths.
SM, Quantitative Susceptibility Mapping; FDRI, Field-Dep
weighted imaging; CSF, cerebrospinal fluid.
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Introduction

Excessive iron deposition in subcortical and brain stem nuclei
occurs in a variety of degenerative neurological and psychiatric disor-
ders, including Alzheimer's disease, Huntington's chorea, multiple scle-
rosis, and Parkinson's disease (Hallgren and Sourander, 1960). Further,
postmortem (Hallgren and Sourander, 1958) and in vivo (Bartzokis et
al., 2007b; Haacke et al., 2007; Pfefferbaum et al., 2009; Pfefferbaum
et al., 2010; Raz et al., 2007) studies have revealed that deep graymatter
brain structures accumulate iron at different rates throughout
adult aging. Structures that exhibit iron accrual support components
of cognitive and motor functioning (Bartzokis et al., 2010; Raz et al.,
2007; Sullivan et al., 2009). To the extent that excessive iron presence
may attenuate neuronal function or disrupt connectivity, quantification
and location of iron deposition may help explain age- and disease-
related motor slowing and other selective cognitive decline.

Several MRI methods have been proposed for in vivo ironmapping
and quantification. Bartzokis et al. (1993) capitalized on the en-
hanced transverse relaxivity (R2) due to iron with increasing main
field strength for the Field-Dependent Relaxation Rate Increase
(FDRI) method. FDRI relies on the use of R2-weighted imaging at
two different field strengths and attributes the relaxation enhance-
ment at higher field to iron, which may be a specific measure of tissue
iron stores (Bartzokis et al., 1993).

Whereas FDRI relies on the modulation of signal intensity in MRI to
infer iron concentration, MRI signal phase has also been proposed as a
source signal for iron mapping, both by direct evaluation of phase im-
ages (Haacke et al., 2004, 2005a) and by reconstruction ofmagnetic sus-
ceptibility images that derive from the phase data (Haacke et al., 2005a,
2007). Local iron concentration is strongly correlated with themagnetic
susceptibility values (Duyn et al., 2007; Liu et al., 2010c; Schweser et al.,
2011b); therefore, quantification of this paramagnetic property presents
a sensitive estimate of iron concentration, although possibly complicat-
ed bymore uncommon factors, such as pathological manganese deposi-
tion (Hazell and Butterworth, 1999). Phase mapping yields high-
resolution, high-SNR data that demonstrate correlation with iron
(Haacke et al., 2007), but as an estimate of the underlyingmagnetic sus-
ceptibility, it suffers from non-local effects and spatial modulation arti-
facts due to the non-trivial mapping from susceptibility to phase (de
Rochefort et al., 2010). To overcome these limitations, we made use of
regularized Quantitative Susceptibility Mapping (QSM) algorithms
that robustly estimate the magnetic susceptibility χ of tissues based
on gradient-echo signal phase. The magnetic susceptibility χ maps to
the observed phase shift in MRI via a well-understood transformation,
but the inverse problem, i.e., estimation of χ from phase, is ill posed
due to zeros on a conical surface in the Fourier space of the forward
transform; hence, χ inversion benefits from additional regularization.
Recently, elegant regularization methods were proposed for deriving
susceptibility inversion. In the work by de Rochefort et al. (2010),
smooth regions in the susceptibility map are promoted to match those
of the MRmagnitude image by introducing a weighted ℓ2 norm penalty
on the spatial gradients of χ. Likewise, Liu et al. (2010a) regularized the
inversion by minimizing the ℓ1 norm of gradients of χ, again weighted
with a mask derived from the image magnitude. Kressler et al. (2010)
experimented using ℓ1 and ℓ2 norm regularizations directly on the sus-
ceptibility values, rather thanposing theminimizationon the gradient co-
efficients. Another method to stabilize the susceptibility reconstruction
problem is to acquire data atmultiple orientations and invert themsimul-
taneously without regularization. This approach was introduced by Liu et
al. (2009) and also investigated by others such as Wharton and Bowtell
(2010) and Schweser et al. (2011b).

In this work, we investigate two different regularization schemes
for susceptibility inversion; using ℓ1-regularized QSM that parallels
the approach of Liu et al. (2010a) and ℓ2-regularized QSM which
was introduced by de Rochefort et al. (2010). Given that magnetic
susceptibility is a property of the underlying tissue, in ℓ1-regularized
QSMwemake the assumption that it is approximately constant within
regions of the same tissue type orwithin an anatomical structure. Based
on this premise, the ℓ1-norm-penalized QSM algorithm regularizes the
inversion by requiring the estimated χ to be sparse in the image
gradient domain. On the other hand, placing an ℓ2 norm penalty on
the spatial gradients of χ does not promote sparsity, but results in a
large number of small gradient coefficients and thus incurs a smooth
susceptibility reconstruction. In addition to regularized susceptibility
inversion, our approach incorporates a robust background phase
removal technique based on effective dipole fitting (Liu et al., 2010b),
which addresses the challenging problem of removing phase variations
in the data that arise primarily from bulk susceptibility variations
between air and tissue rather than themore subtle changes ofχwithin
the brain. Dipole fitting contains no parameters that need tuning and
preserves the phase variations caused by internal susceptibility effects
more faithfully than high-pass filtering, as employed in susceptibility-
weighted imaging (SWI) (Haacke et al., 2004, 2005a). All susceptibility
mapping methods require data acquired at only one field strength,
thereby overcoming certain limitations of the FDRI approach, including
long scan times and the need for spatial registration of image data
acquired with different scanners at different field strengths.

Here, we describe the ℓ1 and ℓ2 norm regularized QSM methods
and apply them to SWI data previously acquired in groups of younger
and elderly, healthy adults (Pfefferbaum et al., 2009). To validate the
iron measures, we compared the results of QSM methods with values
published in a postmortem study (Hallgren and Sourander, 1958). As
further validation, we compared QSM results with those based on
FDRI collected in the same adults (Pfefferbaum et al., 2009) to test
the hypothesis that the iron deposition in striatal and brain stem nu-
clei, but not white matter or thalamic tissue, would be greater in older
than younger adults.

Methods

Susceptibility and MR signal phase

The normalized magnetic field shift δmeasured in a gradient-echo
sequence is related to the MR image phase φ via δ=−φ/(B0 ·γ· TE),
where B0 is the main magnetic field strength, γ is the gyromagnetic
ratio, and TE is the echo time. It follows fromMaxwell's magnetostatic
equations that the relationship between the underlying susceptibility
distribution χ and the observed field shift δ is given by (de Rochefort
et al., 2010; Marques and Bowtell, 2005; Salomir et al., 2003)

Fδ ¼ 1
3
− k2z

k2x þ k2y þ k2z

 !
∘ Fχð Þ ð1Þ

where F is the discrete Fourier transform matrix, kx and ky are the in-
plane frequency indices, kz is the frequency index alongB0, and ∘denotes
Hadamard (element-wise) multiplication. Denoting with D the kernel
that relates the field map to the susceptibility, the relation can also be
expressed as

δ ¼ F−1DFχ ð2Þ

The spatial frequencies at which the kernel is zero define a conical
surface in k-space, which effectively undersamples the Fourier trans-
form of χ and thereby gives rise to the ill-posed problem of suscepti-
bility estimation from image phase. In addition, the susceptibility
kernel is not defined at the center of k-space (the DC point), but
one can choose a solution that vanishes at infinity, which is obtained
by setting the Fourier transform of the field to 0 at k=0 (de Rochefort
et al., 2010). This assignment of signal for the k-space origin causes
the resulting χ to have zero mean; but independent of the particular
design choice for this DC signal, the susceptibility distribution is
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inherently a spatial map of relative susceptibilities. Under the
assumption that thefieldmap and the susceptibility distribution are dif-
ferentiable along kz, Li et al. (2011) derived that the convolution kernel
equals−2/3 at k=0. In thiswork,we adopt the convention of assigning
0 to the DC value of the kernel. Thus, to achieve absolute quantification
of χ, some reference value needs to be established. For this study, we
chose the magnetic susceptibility value in splenium as a reference.
This structure was preferred over taking as a reference the CSF, for
which the susceptibility valueswere observed to differ substantially be-
tween the anterior and the posterior ventricles in this study.

Background effect removal from the field map

In addition to the relatively subtle internal effects of the tissue
iron on the MRI phase, background artifacts caused by air-tissue
boundaries contribute the vast majority of signal variation in the ob-
served phase. While the susceptibility difference between air and
water is about 9.4 ppm (Schenck, 1996), the largest within-brain
variation due to tissue iron is more than an order of magnitude smal-
ler. Assuming that the average human tissue susceptibility is similar
to that of water, it is clear that background effects dominate the ob-
served phase and this undesired signal component is a challenge to
robust susceptibility inversion. Because the background effects usu-
ally vary slowly across space, various methods have been proposed
to filter them out based on this frequency characteristic, such as
polynomial fitting (Duyn et al., 2007) and forward modeling to esti-
mate the phase from the air/tissue interface (Neelavalli et al., 2009).
Even though these methods are effective for background phase
removal, their impact on the internal phase variations due to tissue
iron is unclear. A recent background field removal algorithm,
effective dipole fitting (Liu et al., 2010b), aims to estimate the
background susceptibility distribution that optimally matches the
field inside the region of interest (ROI), and removes this
contribution to recover the foreground field map. This is achieved
by solving a least-squares problem

χout ¼ argminχ‖M δ−F−1DFM̃ χ
� �

‖2
2 ð3Þ

where M is the brain mask that marks the ROI and M̃ is the
complement of M, thus marking the background. After solving for
χout, the field map induced only by the internal local effects is
obtained by

δin ¼ δ−F−1DFM̃ χout ð4Þ

Compared with high-pass filtering, effective dipole fitting was seen
to yield 1/3 to 1/7 times the root-mean-square error relative to the
truefieldmaps obtained from reference scans (Liu et al., 2010b). Anoth-
er elegant background removal technique called SHARP (Schweser et
al., 2011b), with results comparable to those of the dipole fitting meth-
od (Schweser et al., 2011a), involves removing the harmonic contribu-
tions to the phase inside the region of interest by filtering.

Susceptibility inversion with ℓ1 regularization

The final step in the proposed algorithm is to estimate the suscep-
tibility distribution that gives rise to δin. Hence, we seek to solve

δin ¼ F−1DFχin ð5Þ

Because some of the spatial frequencies are undersampled by the
kernel D, the inversion of χin benefits from regularization that
imposes prior knowledge on the reconstructed susceptibility map.
The susceptibility values are tied to the paramagnetic properties of
the underlying tissue structure; hence they vary smoothly across
space within anatomical boundaries and can be approximated to be
piece-wise constant. In this case, the susceptibility map is expected
to be sparsely represented in the spatial image gradient domain. To
formulate this belief, we seek the χ distribution that matches the
field map δin, and that also has sparse image gradients

χin ¼ argminχ‖δin−F−1DFχ‖2
2 þ λ⋅ ‖Gχ‖1with G ¼

Gx
Gy
Gz

2
4

3
5 ð6Þ

where ‖G χ‖1 is the ℓ1 norm of image gradients in all three dimen-
sions, and λ is a regularization parameter that trades off data consis-
tency and spatial smoothness. This convex program is very similar to
the objective function in the Compressed Sensing (CS) MRI literature,
where the aim is to reconstruct MR images from undersampled k-
space data. According to CS theory, if the underlying image can be ap-
proximated to be sparse in a transform domain, then it can be recov-
ered from randomly undersampled k-space data via a nonlinear
recovery scheme, and the reconstruction quality depends on the
number of observed frequency samples as well as the coherence of
the aliasing artifacts in the transform domain (Lustig et al., 2007).
The nonlinear recovery method usually involves penalizing the ℓ1
norm of the transformed image. Based on this, Eq. (6) can be viewed
as CS reconstruction with a modified observation matrix DF instead of
the undersampled Fourier transform.

An objective function similar to Eq. (6) has been previously pro-
posed in Liu et al. (2010a), which included a smoothing term of the
form ‖WGG χ‖L. Here, WG is a weighting matrix derived from the MRI
image magnitude, and L denotes the choice of the norm, which can be
either ℓ1 or a homotopic approximation to the ℓ0 norm. Apart from
the magnitude weighting, our method parallels this approach.

Susceptibility inversion with ℓ2 regularization

Another way of introducing regularization to the inversion prob-
lem is by penalizing the ℓ2 norm of spatial gradients of the suscepti-
bility distribution,

χin ¼ argminχ‖δin−F−1DFχ‖2
2 þ β⋅‖Gχ‖2

2 ð7Þ

In contrast with the ℓ1 regularization that promotes sparse spatial
gradients (i.e., a small number of non-zero gradient coefficients), ℓ2-
regularized inversion favors a large number of small gradient coeffi-
cients. Regularized QSM with ℓ2 norm penalty was introduced by de
Rochefort et al. (2010), which also included a weighting matrix W1

derived from the signal magnitude in the regularization term to
yield ‖W1G χ‖2

2. To investigate the effect of the regularization norm
selection in susceptibility inversion, we present QSM results with
both regularization styles.

Effect of regularization parameters λ and β

The regularization parameter λ in Eq. (6) determines the
smoothness of the reconstructed susceptibility map such that larg-
er values of λ yield smoother image results than do smaller ones
(Fig. 1). This flexibility allows us to control the scale of spatial fea-
tures present in the χ reconstruction. In terms of imposing prior
belief on the susceptibility distribution, it is possible to recover
Eq. (6) by assuming that the normalized field map δin is corrupted
by white Gaussian noise with some variance σ2 and by placing a
sparsity-promoting Laplacian prior distribution on the gradient co-
efficients of the χ map,

p ∂χð Þ ¼ λ
4σ2

� �M

exp − λ
2σ2 ∑

M

i¼1
∂χi
�� �� !

ð8Þ



Fig. 1. L-curve for ℓ1-regularizedQSM results for a young subject. X-axis: data consistency term ‖δ−F−1 DFχ‖2 in regularized reconstruction for varying values of the smoothing param-
eter λ. Y-axis: regularization term ‖Gχ‖1. Setting λ=5·10−5 yielded an under-regularized susceptibility map with ringing artifacts (a), whereas using λ=10−3 resulted an over-
regularized reconstruction (c). For λ=2·10−4, the operating point with the largest curvature on the L-curve was obtained (b). This setting was used for the reported ℓ1-regularized
results.
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where ∂χ represents the spatial gradient of χ, and M is the total
number of voxels inχ. With these noise and prior models, invoking
the maximum a posteriori (MAP) estimate reduces to Eq. (6). From
Fig. 2. L-curve for ℓ2-regularized QSM results for a young subject. X-axis: data consistency t
parameter β. Y-axis: regularization term ‖G χ‖2. Setting β=3·10−3 yielded an under-regul
an over-regularized reconstruction (c). For β=1.5·10−2, the operating point with the large
regularized results.
this point of view, using a large λwill produce a highly peaked prior dis-
tribution at zero, inducing sparser image gradient solutions, and smooth-
er susceptibility maps.
erm ‖δ−F−1 DF χ‖2 in regularized reconstruction for varying values of the smoothing
arized susceptibility map with ringing artifacts (a), whereas using β=7·10−2 resulted
st curvature on the L-curve was obtained (b). This setting was used for the reported ℓ2-

image of Fig.�1


Fig. 3. Young (left) and elderly (right) group averages for FDRI (a), ℓ1-regularized QSM (b), and ℓ2-regularized QSM (c). Greater iron concentration yields brighter QSM and FDRI
images. Splenium reference ROIs are indicated with a white box on the axial QSM slices.
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Again from a Bayesian perspective, the ℓ2 norm regularization cor-
responds to computing the MAP estimate after placing a multivariate
Gaussian prior on the gradient coefficients of the susceptibility map,

p ∂χð Þ ¼ 1

2πσ2=β
� �M=2 exp − 1

2σ2=β
∑
M

i¼1
∂χi
�� ��2 !

ð9Þ

where σ2 is the data noise in the field map and β is the regularization
parameter in Eq. (7). Hence, the variance of the gradient coefficients
(σ2/β) is inversely proportional to the ℓ2 regularization parameter
β. Accordingly, a large regularization parameter will limit the varia-
tion in the gradient coefficients and induce smaller values (Fig. 2).

Selection of regularization parameters λ and β

To choose appropriate regularization parameters that balance data
consistency and the amount of regularization, the L-curve method
was employed (Hansen, 2000). The corners of the L-curves were not
sharp for ℓ1- and ℓ2-regularized reconstructions (Figs. 1 and 2), and
optimal regularization parameters were determined by finding the
operating points with the largest curvature. L-curve tests were per-
formed on a young and an elderly subject from the in vivo dataset
and the optimal operating points were found to be λ=2⋅10−4 for
ℓ1-regularized QSM and β=1.5 ⋅10−2 for ℓ2-regularized reconstruc-
tions on both the young and the elderly subjects.
Dataset acquired in younger and elderly adults used for comparison of
regularized QSM and FDRI

To examine consistency with our previous study that investigated
the performance of FDRI (Pfefferbaum et al., 2009), we tested our
new iron quantification algorithm on the same dataset, as summa-
rized below.

image of Fig.�3
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Subjects

Two groups of healthy, highly educated, right-handed adults were
studied: 11 younger adults (mean±S.D. age=24.0±2.5, range=21
to 29 years, 15.9 years of education; 5 men, 6 women) and 12 elderly
adults (mean±S.D. age=74.4±7.6, range=64 to 86 years, 16.3 years
of education; 6men, 6women). The younger subjects included laborato-
ry members and volunteers recruited from the local community. All
older participants were recruited from a larger ongoing study of normal
aging and scored well within the normal range on the Dementia Rating
Scale (Mattis, 1988): mean=140.6, range=132 to 144 out of 144, cut-
off for dementia=124. Mean (and range) of days between 1.5 T and
3.0 T scan acquisition were 16.5 (0 to 56) days for the young and 9.3
(0 to 42) days for the elderly group; for 2 of the young and8 of the elder-
ly both sets of scans were acquired on the same day.

Image acquisition protocols

MRI data were acquired prospectively on 1.5 T and 3.0 T General
Electric (Milwaukee, WI) Signa human MRI scanners (gradient
strength=40 mT/m; slew rate=150 T/m/s).

FDRI acquisition

At 1.5 T, after auto shimming for the session, the following se-
quences were acquired for 62 axial slices, each 2.5 mm thick:

1) 3D SPoiled Gradient Recalled Echo (SPGR) for structural imaging
and registration (TR/TE=8.1/3.3 ms, FA=30°);

2) multi-shot Echo Planar Spin Echo (EPSE) (TR/TE 6000/17 ms,
FA=90°, 256×192 in-plane, FOV=24 cm, 4 NEX, 24 interleaves
with 8 phase-encode lines per TR, 9:40 min);

3) multi-shot EPSE (TR/TE 6000/60 ms, FA=90°, 256×192 in-plane,
FOV=24 cm, 6 NEX, 24 interleaves, 14:20 min).

At 3.0 T, after auto shimming for the session, the following
sequences were acquired in the axial plane:

1) 3D SPGR for structural imaging and registration (TR/TE=8.1/3.3 ms,
FA=15°, 124 slices, 1.25 mm thick);
Fig. 4. X-axis: Mean±SD iron concentration (mg/100 g fresh weight) determined postmortem
ppm (left) and FDRI in s−1/T (right) indices in all 23 subjects (black squares); the gray circl
elderly group.
2) multi-shot EPSE (TR/TE 6000/17 ms, FA=90°, 256×192 in-plane,
FOV=24 cm, 3 NEX, 24 interleaves, 62 slices, 2.5 mm thick,
7:10 min);

3) multi-shot EPSE (TR/TE 6000/60 ms, FA=90°, 256×192 in-plane,
FOV=24 cm, 6 NEX, 24 interleaves, 62 slices, 2.5 mm thick,
14:20 min).

Susceptibility-weighted image acquisition

At 1.5 T, after auto shimming for the session, the following
sequences were acquired for 62 axial slices, each 2.5 mm thick:

1) 3D SPGR for structural imaging and registration (TR/TE=28/10 ms,
FA=30°, 256×256 in-plane, FOV=24 cm);

2) susceptibility-weighted 3D SPGR (TR/TE=58 ms/40 ms, FA=15°,
512×256 in-plane, FOV=24 cm, 12:20 min, with flow compensa-
tion) (Haacke et al., 2005b, 2007);

3) 2D gradient-recalled echo sequence (TR/TE=600/3 ms, FA=20°);
4) 2D gradient-recalled echo sequence (TR/TE=600/7 ms, FA=20°).

Phase images were constructed from the real and imaginary
components of the SWI-SPGR data after the phase had been
unwrapped with FSL PRELUDE (Phase Region Expanding Labeler
for Unwrapping Discrete Estimates (Jenkinson, 2003)). The magni-
tude and phase-unwrapped SWI data were down-sampled from
512×256 to 256×256 via averaging to match the FDRI resolution.
Brain masks were generated with the FSL Brain Extraction Tool,
BET (Smith, 2002), to be used in the dipole fitting step for back-
ground phase removal. After estimating the foreground field maps
from the unwrapped phase data with the down-sampled size
256×256, susceptibility maps were generated with the two QSM
algorithms.

Image registration

As previously described (Pfefferbaum et al., 2009), for each subject
and for 1.5 T and 3.0 T separately, the late-echo EPSE data were non-
rigidly registered (Rohlfing and Maurer, 2003) [http://nitrc.org/
projects/cmtk/] to the early-echo EPSE data. This was necessary
in each ROI (Hallgren and Sourander, 1958). Y-axis: Mean±SD ℓ1-regularized QSM in
es indicate the mean of the young group, and the open circles indicate the mean of the

http://nitrc.org/projects/cmtk/
http://nitrc.org/projects/cmtk/
image of Fig.�4
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because the two echoes arose from separate acquisitions, rather than
a single dual-echo acquisition, and were, therefore, not always per-
fectly aligned with each other. The 1.5 T early-echo EPSE image of
each subject was registered to the 3.0 T early-echo EPSE image of
the same subject, which was then registered nonrigidly to the sub-
ject's 3.0 T SPGR image. The 3.0 T SPGR image from each subject,
after brain extraction using BET, finally was registered nonrigidly to
the SPGR channel of the SRI24 atlas (Rohlfing et al., 2010) [http://
nitrc.org/projects/sri24/]. Via concatenation of the aforementioned
registration transformations, the 1.5 T and 3.0 T early-echo and late-
echo images were all reformatted into 1-mm isotropic SRI24 space,
each using a single interpolation with a 5-pixel-radius cosine-
windowed sinc kernel. Reformatting both 1.5 T and 3.0 T data from
each subject into SRI24 coordinates via that subject's 3.0 T SPGR
image (rather than separately via the early-echo EPSE images at
each field strength) ensures that the unavoidable inter-subject
registration imperfections are consistent for images from both field
strengths. The 1.5 T SWI magnitude images were rigidly registered
to a contemporaneously acquired structural SPGR image, which was
then registered nonrigidly to the same subject's 3.0 T SPGR image.
The SWI-SPGR registration was limited to a rigid transformation
because signal dropouts in magnitude SWI due to B0 field
inhomogeneities prevented nonrigid correction of the relatively
small distortions between SWI and SPGR. Again, via concatenation
of transformations, the phase images were reformatted into SRI24
space, again with a 5-pixel radius cosine sinc kernel. All data were
analyzed in common 1-mm isotropic SRI24 atlas space.
Region-of-Interest (ROI) identification

Voxel-by-voxel FDRI images (FDRI=(R23T−R21.5T) /1.5 T) were
created for each subject and used to make a group FDRI average, com-
prising all young and elderly subjects. A similar group average was
made for the QSM images, and separate young and elderly group av-
erages were made for display purposes (Fig. 3).

As previously described (Pfefferbaum et al., 2009), bilateral cau-
date, globus pallidus, putamen, thalamus, and white matter sample
regions of interest (ROIs) were drawn (by A.P.) on the group-average
(all young plus all elderly subjects) FDRI images in common SRI24
space, reformatted in the coronal plane. The globus pallidus, puta-
men, caudate, and white matter sample were drawn on 10 contigu-
ous, 1-mm thick slices at an anterior–posterior location that
maximized the presence of all three basal ganglia structures in the
same slices. The thalamus was drawn on the next 10 contiguous slices
posterior to the basal ganglia. The caudate was eroded one pixel and
Fig. 5. Correlation between FDRI and ℓ1-regularized QSM results on the regions of interest. R
Left: all 23 subjects; middle: young group; right: elderly group.
thalamus was eroded two pixels on a slice-by-slice basis to avoid par-
tial voluming of CSF. Substantia nigra and red nucleus ROIs were also
identified, based on their FDRI intensities. The same ROIs were also
manually identified on the group-average phase data (all young and
all elderly combined), reformatted in the axial plane (Ogg et al.,
1999), and guided by phase conspicuity. When drawing ROIs on the
phase data, an effort was made to exclude the bright rims around
the globus pallidus and putamen as well as the division between
them. Although this approach biases the data towards more negative
phase (i.e., lower values reflecting less iron), its purpose was to max-
imize the sensitivity of phase to age effects. Thus, iron estimates were
conducted on both sets of ROI identifications, the phase-guided and
the FDRI-guided.

For each subject and for each ROI at each field strength, the mean in-
tensity of all voxels in an ROI for the early- and late-echo EPSE were used
to compute R23T and R21.5T and the FDRI. QSM values were computed as
the magnetic susceptibility in parts per million (ppm) for all voxels iden-
tified in eachROI projected onto each individual's QSMdataset. Thus, both
FDRI intensity and phase conspicuity were each used to guide ROI delin-
eation. The average susceptibility of splenium in each subject was used as
a reference for that subject's reported QSM results. This was preferred
over taking the CSF susceptibility as a reference, as it was seen to differ
substantially between the anterior and the posterior regions. Although
the raw averages in the splenium did not differ significantly between
the young and the elderly groups (p=0.2359 for ℓ1-regularized and
p=0.2016 for ℓ2-regularized QSM), they were larger in the elderly
group than the young group (χsplenium

elderly =−0.0378 ppm and χsplenium
young =

−0.0479 ppm for ℓ1-regularized and χsplenium
elderly =−0.0297 ppm and

χsplenium
young =−0.0374 ppm for ℓ2-regularized QSM). This should induce a

bias against observing young-elderly group susceptibility differences in
the regularized QSM reconstructions.
Statistical analysis

We predicted that the ROI iron values would correlate positively
with published postmortem iron values (Hallgren and Sourander,
1958) and with FDRI values. Comparisons of the two in vivo iron in-
dices with each other and also with published postmortem values
were based on nonparametric (Spearman) correlations. We then test-
ed the hypotheses that, relative to the young group, the elderly group
would have higher QSM and FDRI values in striatal and brain stem
ROIs, but not in thalamic or white matter ROIs. Because we posed
directional hypotheses, group differences were considered significant
at p≤0.0125, the one-tailed, family-wise Bonferroni-corrected p-
value at α=0.05 for 8 measures. All measurements were conducted
esults indicate strong relationship between the two methods (Rho=0.976, p=0.0098).

http://nitrc.org/projects/sri24/
http://nitrc.org/projects/sri24/
image of Fig.�5


Table 1a
Mean (±SD) of each measure by region for each group: ℓ1-regularized QSM results using phase-guided ROIs and FDRI-guided ROIs.

Region ℓ1-regularized QSM (ppm), phase-guided ROIs ℓ1-regularized QSM (ppm), FDRI-guided ROIs

Young (N=11) Elderly (N=12) t(elderlyNyoung) Young (N=11) Elderly (N=12) t(elderlyNyoung)

Frontal WM 0.0367 0.02982 t=−0.7505a 0.0349 0.0275 t=−0.9182a

(0.0187) (0.0251) p=0.2307 (0.0190) (0.0194) p=0.1844
Thalamus 0.0464 0.0220 t=−2.1336a 0.0420 0.0208 t=−1.8805a

(0.0230) (0.0129) p=0.0224 (0.0210) (0.0317) p=0.0370
Caudate 0.0937 0.1033 t=0.9689 0.0763 0.1038 t=2.1970

(0.0189) (0.0274) p=0.1718 (0.0224) (0.0356) p=0.0197
Putamen 0.0779 0.1233 t=3.8807 0.0683 0.1134 t=3.5777

(0.0188) (0.0343) p=0.0004 (0.0205) (0.0369) p=0.0009
Globus pallidus 0.1224 0.1472 t=2.5420 0.1422 0.1961 t=4.9807

(0.0200) (0.0261) p=0.0095 (0.0172) (0.0318) p=0.0001
Substantia nigra 0.0820 0.1113 t=2.0712 0.1045 0.1524 t=3.0319

(0.0299) (0.0372) p=0.0254 (0.0426) (0.0331) p=0.0031
Red nucleus 0.0933 0.1473 t=3.2568 0.0927 0.1435 t=2.8404

(0.0379) (0.0413) p=0.0019 (0.0395) (0.0458) p=0.0049
Dentate nucleus 0.0693 0.0595 t=−1.0000a 0.0544 0.0487 t=−0.6703a

(0.0151) (0.0292) p=0.1643 (0.0174) (0.0225) p=0.2550

p-values are 2-tailed. Numbers in bold indicate significant differences, family-wise Bonferroni corrected based on one-tailed directional hypotheses, requiring p≤0.0125 for
8 comparisons.

a Negative t values indicate a group difference with the elderly having less iron than the young.
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twice: once with FDRI-guided ROI identification, and once with
phase-guided ROI identification.

Results

Correlations of FDRI and QSM values with postmortem iron concentrations

Fig. 4 presents the mean±SD iron concentration determined post-
mortem in each ROI (Hallgren and Sourander, 1958) on the x-axis and
the mean±SD FDRI values in s-1/T and ℓ1-regularized QSM values in
ppm for young plus elderly subjects on the y-axes. The correlations be-
tween ℓ1-regularized QSM and postmortem (Rho=0.881, p=0.0198),
between ℓ2-regularized QSM and postmortem (Rho=0.881, p=0.0198),
and between FDRI and postmortem iron indices (Rho=0.952,
p=0.0117) were high.

Correlations between in vivo QSM and FDRI iron concentration metrics

To investigate the consistency between the iron concentrations pre-
dicted by the two QSMmethods and FDRI, we correlated the threemet-
rics in eachROI belonging to the 23 subjects. The correlation parameters
indicate strong agreement between ℓ1-regularized QSM and FDRI
Table 1b
Mean (±SD) of each measure by region for each group: ℓ2-regularized QSM results using p

Region ℓ2-regularized QSM (ppm), phase-guided ROIs

Young (N=11) Elderly (N=12) t(elderlyNy

Frontal WM 0.0240 0.0191 t=−0.8163
(0.0146) (0.0143) p=0.2118

Thalamus 0.0388 0.0155 t=−2.738a

(0.0214) (0.0194) p=0.0061
Caudate 0.0814 0.0897 t=1.1032

(0.0164) (0.0195) p=0.1412
Putamen 0.0677 0.1101 t=4.7501

(0.0168) (0.0248) p=0.0001
Globus pallidus 0.1069 0.1341 t=3.0833

(0.0188) (0.0233) p=0.0028
Substantia nigra 0.0656 0.0939 t=2.5812

(0.0280) (0.0246) p=0.0087
Red nucleus 0.0740 0.1184 t=3.2024

(0.0333) (0.0331) p=0.0021
Dentate nucleus 0.0570 0.0509 t=−0.9161

(0.0137) (0.0178) p=0.1850

p-values are 2-tailed. Numbers in bold indicate significant differences, family-wise Bonfe
8 comparisons.

a Negative t values indicate a group difference with the elderly having less iron than the
(Rho=0.976, p=0.0098) (Fig. 5) and between ℓ2-regularized QSM
and FDRI (Rho=0.976, p=0.0098) (not shown).

Age differences in regional iron concentration: QSM and FDRI

All ROI and statistical analyses were conducted on both phase-
guided and FDRI-guided ROIs. Based on the initial FDRI data analysis,
which reported lack of consistent cerebral hemisphere asymmetries
across iron-rich structures (Pfefferbaum et al., 2009), all analyses
herein used bilateral data, expressed as the mean of the left and
right measures for each ROI (Tables 1a, 1b, 1c). The three methods
produced essentially the same results. All t-test and p-values are pre-
sented in Tables 1a, 1b, and 1c.

Age differences identified with regularized QSM

Analysis of the QSM results indicated that the elderly group had
significantly more iron than the young group in striatal regions of
the putamen and globus pallidus for both ℓ1 and ℓ2 norm regularized
results. Even though the elderly tended to have more iron in the cau-
date nucleus than the young, the difference was not significant in ei-
ther of the QSMmethods. Likewise, ℓ1- and ℓ2-regularized QSM values
hase-guided ROIs and FDRI-guided ROIs.

ℓ2-regularized QSM (ppm), FDRI-guided ROIs

oung) Young (N=11) Elderly (N=12) t(elderlyNyoung)

a 0.0228 0.0187 t=−0.7029a

(0.0156) (0.0124) p=0.2449
0.0344 0.0139 t=−2.3931a

(0.0199) (0.0211) p=0.0131
0.0653 0.0888 t=2.2814
(0.0211) (0.0276) p=0.0166
0.0568 0.0976 t=4.3091
(0.0176) (0.0264) p=0.0002
0.1221 0.1740 t=5.1724
(0.0153) (0.0298) p=0.0001
0.0832 0.1210 t=3.0743
(0.0354) (0.0227) p=0.0029
0.0738 0.1141 t=2.6751
(0.0339) (0.0379) p=0.0071

a 0.04314 0.0400 t=−0.5076a

(0.0146) (0.0147) p=0.3085

rroni corrected based on one-tailed directional hypotheses, requiring p≤0.0125 for

young.



Table 1c
Mean (±SD) of each measure by region for each group: FDRI results using phase-guided ROIs and FDRI-guided ROIs.

Region FDRI (s−1/T), phase-guided ROIs FDRI (s−1/T), FDRI-guided ROIs

Young (N=11) Elderly (N=12) t(elderlyNyoung) Young (N=11) Elderly (N=12) t(elderlyNyoung)

Frontal WM 2.02 1.545 t=−2.8643a 2.0732 1.5976 t=−1.8535a

(0.3268) (0.4522) p=0.0093 (0.6149) (0.6144) p=0.0779
Thalamus 2.331 1.698 t=−2.6712a 2.2635 1.6767 t=−2.4115a

(0.5172) (0.6105) p=0.0143 (0.5353) (0.6229) p=0.0251
Caudate 2.531 3.198 t=2.1812 2.5384 2.9789 t=1.3198

(0.4752) (0.9042) p=0.0407 (0.3842) (1.0421) p=0.2011
Putamen 2.954 3.904 t=3.7284 2.8900 3.9732 t=4.1820

(0.4282) (0.738) p=0.0012 (0.4137) (0.7612) p=0.0004
Globus pallidus 4.223 4.497 t=0.8642 4.8961 5.5338 t=1.9285

(0.5178) (0.9267) p=0.3972 (0.4369) (1.0121) p=0.0674
Substantia nigra 3.225 3.421 t=0.4804 3.1479 3.9619 t=2.0290

(0.9541) (0.9988) p=0.6359 (0.9576) (0.9641) p=0.0553
Red nucleus 3.268 3.932 t=1.7415 3.1284 3.99916 t=2.5240

(0.9763) (0.8528) p=0.0962 (0.8765) (0.7634) p=0.0197
Dentate nucleus 2.41 2.533 t=0.3546 2.0137 1.9244 t=−0.3637

(0.7971) (0.8682) p=0.7264 (0.5972) (0.5801) p=0.7196

p-values are 2-tailed. Numbers in bold indicate significant differences, family-wise Bonferroni corrected based on one-tailed directional hypotheses, requiring p≤0.0125 for
8 comparisons.

a Negative t values indicate a group difference with the elderly having less iron than the young.
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indicated significantly more iron in the elderly than young group in
the red nucleus and substantia nigra, but not the dentate nucleus.
The only exception was the ℓ1-regularized substantia nigra results
on the phase-guided ROIs, for which the group difference was not sig-
nificant using family-wise Bonferroni correction.

Average susceptibility values in the thalamus tended to be
lower in the elderly relative to the young (indicating less iron in
the elderly group) for both types of regularization, and this differ-
ence was significant for ℓ2 norm regularized QSM under phase-
Fig. 6. Mean±S.E.M. of average susceptibility in ppm computed by the two methods
(ℓ1-regularized QSM, top; ℓ2-regularized QSM, bottom) for each ROI in the young and
elderly groups.
guided ROIs. Likewise, the elderly had smaller susceptibility values
in the white matter sample, but the difference was not significant
(Fig. 6).

Age differences identified with FDRI

The elderly group had a significantly higher FDRI than the young
group in the putamen but not the caudate nucleus or the very iron-
rich globus pallidus. Although the elderly tended to have higher
FDRI values in the red nucleus and substantia nigra, the differences
were not significant; the groups did not differ significantly in FDRI
of the dentate nucleus. By contrast, the FDRI values in the thalamic
and white matter samples were significantly lower (indicative of
less iron) in the elderly than the young group (Fig. 6).

Discussion

This study presented regularized QSMmethods with two different
choices of regularization, namely ℓ1 and ℓ2 norm penalties, for quan-
tifying susceptibility-weighted imaging data, and established their
ability to measure iron concentration in regional striatal and brain
stem nuclei of young and elderly adults. The in vivo estimates of re-
gional iron concentration comported well with published postmortem
measurements (Hallgren and Sourander, 1958), with both ap-
proaches yielding the same rank ordering of iron concentration by
brain structure, from lowest in white matter to highest in globus pal-
lidus. Further validation was provided by comparison of the in vivo
measurements, the two QSM methods and FDRI, which again yielded
perfect rank ordering of iron by structure. The final means of valida-
tion was to assess how well each in vivo method detected known
age-related differences in regional iron concentrations measured in
the same young and elderly healthy adults. Results from all three
methods were consistent in identifying higher iron concentrations
in striatal and brain stem ROIs (i.e., caudate nucleus, putamen, globus
pallidus, red nucleus, and substantia nigra) in the older than the
young group. With the exception of ℓ1-regularized results for the sub-
stantia nigra averaged under phase-guided ROIs, QSM values in the
globus pallidus, red nucleus, and substantia nigra were significantly
larger in the elderly than the young based on both FDRI- and phase-
guided ROIs using ℓ1 or ℓ2 regularization. For the FDRI metric, signifi-
cant difference was observed only in the putamen for FDRI- and
phase-guided delineation. Therefore, QSM appeared more sensitive
than FDRI in detecting age differences in brain stem structures by pro-
ducing much smaller p-values in the statistical tests. Although both
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measurement approaches identified the globus pallidus as being the
most iron-rich structure regardless of age, only QSM found that the
concentration in the elderly was significantly higher than that in the
young adults. The average susceptibility value in the globus pallidus
of young subjects has been reported to be around 0.20 ppm by several
groups (e.g., Schweser et al., 2011b; Wharton and Bowtell, 2010)
(taking CSF as reference, with isotropic voxels), which is larger than
the group averages reported in this study (0.10−0.14 ppm, taking
splenium as reference) . This difference might stem from averaging
across subjects and partial volume issues considering the 2.5 mm
slice thickness used in data acquisition.

The two regularized QSM methods produced iron concentration
estimates consistent with the well-established FDRI metric. In addi-
tion to yielding strongly correlated results to both FDRI and postmor-
tem data, the susceptibility mapping approach possesses several other
favorable qualities. First, the data acquisition step for QSM is complet-
ed at a single field strength, whereas acquisitions at two field
strengths are required to compute the FDRI values. Working at a sin-
gle field strength also eliminates the need for spatial registration, and
thus a potential source of measurement error. Second, the susceptibil-
ity maps estimated with the QSM algorithms have a higher spatial
resolution than the FDRI images. This has the additional benefit of en-
abling the quantification of vessel oxygenation ratios, because the in-
dividual vessels can be clearly resolved in the produced χ maps.
However, the presented QSM algorithms produce relative maps of tis-
sue susceptibility, which require the selection of a reference susceptibil-
ity value for absolute quantification. In this study, the average
susceptibility of splenium in each subject was taken as reference, but
a point to note is that white matter samples have been reported to
have anisotropic susceptibility (Lee et al., 2010), i.e., their susceptibility
values depend on the orientation relative to the main magnetic field.

The regularized QSM algorithms can be considered a refinement of
the pioneering work by Haacke (Haacke et al., 2004, 2005a, 2007) on
Susceptibility-Weighted Imaging (SWI), which estimates local iron
concentration by inspecting the changes in gradient-echo image
phase. Because the background phase constitutes the major part of
the observed phase, high-pass filtering is applied to obtain an esti-
mate of the phase accrued by the tissue iron while removing the
slowly-varying background effects. Although practical, filtering also
removes some tissue phase information (Liu et al., 2010b).

The proposed method addresses this problem by using an optimi-
zation approach called dipole fitting (Liu et al., 2010b) that estimates
and subtracts the background phase without affecting the tissue
phase. In addition to yielding high-quality tissue field maps, dipole
fitting only requires the solution of a least-squares problem, which
can be done using a variety of gradient or conjugate direction optimi-
zation methods. As opposed to the high-pass filtering approach,
which requires optimal selection of filter size, and polynomial fitting,
which depends on the order of the polynomial, dipole fitting contains
no parameters that need tuning. On the other hand, high-pass filter-
ing methods are dramatically faster than iterative optimization
methods employed in the dipole fitting approach. In addition, rather
than relying only on the image phase, which produces a spatially dis-
torted measure of tissue iron concentration, the proposed method
solves for the underlying paramagnetic property of the tissue and
produces a regularized measure of χ, which in turn is a sensitive
estimate of iron concentration.

Other susceptibility mapping algorithms have demonstrated robust
results. An elegant approach by Schweser et al. (2011b) estimated the
χ distributionwithout employing regularization. This approach, howev-
er, requires data to be acquired at three different orientations with re-
spect to the main magnetic field, thereby providing challenges to
subjects in terms of scan time and head positioning and challenges to
post-acquisition processing in terms of spatial registration. Another in-
fluential QSM algorithm using regularization was introduced by de
Rochefort et al. (2010) and it forms the basis of the ℓ2-regularized
method used in our work. After obtaining the tissue fieldmap by solving
a least squares problem similar to the dipole fitting formulation of Liu et
al. (2010b), this QSM algorithm places a weighted ℓ2 norm penalty on
the spatial gradients ofχ.Webelieve that posing the reconstructionprob-
lemwith an ℓ1 normpenalty that promotes sparsity in the spatial gradient
domain of the susceptibility distribution is a better fit to the nature of the
problem. As the susceptibility kernel effectively undersamples the k-space
of the tissue field map, the inversion problem is inherently an under-
determined system similar to the one encountered in the compressed-
sensing literature (Lustig et al., 2007). The demonstrated ability of
sparsity-inducing priors in undersampled image reconstruction makes
the ℓ1 norm an excellent candidate for susceptibility mapping (Liu et al.,
2010a), and the ℓ1-regularized algorithm in our study parallels this
effort. We also note an interesting comparison in Wharton and Bowtell
(2010) between the ℓ2-regularized approach similar to that of de
Rochefort et al. (2010) against a multiple-orientation reconstruction
strategy. These results indicate that ℓ2-regularized single-orientation
susceptibility maps yield iron estimates of quality comparable to those
calculated using data acquired at multiple orientations.

Conclusion

Herein are presented two regularized Quantitative Susceptibility
Mapping algorithms, employing ℓ1 and ℓ2 norm regularization,
which successfully remove background phase effects via dipole fitting
and solve for the tissue susceptibility distribution via convex optimi-
zation. The performance of these algorithms was favorable when
compared with other published in vivo and postmortem estimates of
regional tissue iron concentrations. Because the accumulation of
iron in the brain can have untoward effects on motor and cognitive
function in normal aging (Bartzokis et al., 2010; Sullivan et al.,
2009) and can be disproportionately greater in degenerative diseases
(Bartzokis et al., 1999, 2007a; Bartzokis and Tishler, 2000; Brass et al.,
2006; Granholm et al., 1993; Martin et al., 1998; Michaeli et al., 2007),
quantitative assessment of this accumulation has the potential of pro-
viding a tool for monitoring or even diagnosis. The robustness, practi-
cality, and demonstrated ability of predicting the change in iron
deposition in adult aging suggest that the presented QSM algorithms
using single-field-strength data is a possible alternative for FDRI tis-
sue iron estimation requiring two field strengths.

Conflict of interest statement

Drs. Bilgic, Pfefferbaum, Rohlfing, Sullivan have no conflicts of in-
terest with this work, either financial or otherwise.

Author Adalsteinsson receives research support from Siemens
Healthcare and the Siemens-MIT Alliance.

Acknowledgments

National Institutes of Health, Grant numbers NIH R01 EB007942,
AG019717, AA005965, AA017168, EB008381;National Science Foundation
(NSF), Grant number 0643836; Siemens Healthcare; Siemens-MIT
Alliance; MIT-CIMIT Medical Engineering Fellowship.

References

Bartzokis, G., Tishler, T.A., 2000.MRI evaluationof basal ganglia ferritin iron andneurotoxicity
in Alzheimer's and Huntingon's disease. Cell. Mol. Biol. (Noisy-le-grand) 46, 821–833.

Bartzokis, G., Aravagiri, M., Oldendorf, W.H., Mintz, J., Marder, S.R., 1993. Field depen-
dent transverse relaxation rate increase may be a specific measure of tissue iron
stores. Magn. Reson. Med. 29, 459–464.

Bartzokis, G., Cummings, J.L., Markham, C.H., Marmarelis, P.Z., Treciokas, L.J., Tishler, T.A.,
Marder, S.R., Mintz, J., 1999. MRI evaluation of brain iron in earlier- and later-onset
Parkinson's disease and normal subjects. Magn. Reson. Imaging 17, 213–222.

Bartzokis, G., Lu, P.H., Tishler, T.A., Fong, S.M., Oluwadara, B., Finn, J.P., Huang, D.,
Bordelon, Y., Mintz, J., Perlman, S., 2007a. Myelin breakdown and iron changes in
Huntington's disease: pathogenesis and treatment implications. Neurochem. Res.
32, 1655–1664.



2635B. Bilgic et al. / NeuroImage 59 (2012) 2625–2635
Bartzokis, G., Tishler, T.A., Lu, P.H., Villablanca, P., Altshuler, L.L., Carter, M., Huang, D.,
Edwards, N., Mintz, J., 2007b. Brain ferritin iron may influence age- and gender-
related risks of neurodegeneration. Neurobiol. Aging 28, 414–423.

Bartzokis, G., Lu, P.H., Tingus, K., Mendez, M.F., Richard, A., Peters, D.G., Oluwadara, B.,
Barrall, K.A., Finn, J.P., Villablanca, P., Thompson, P.M., Mintz, J., 2010. Lifespan tra-
jectory of myelin integrity and maximum motor speed. Neurobiol. Aging 31,
1554–1562.

Brass, S.D., Chen, N.K., Mulkern, R.V., Bakshi, R., 2006. Magnetic resonance imaging
of iron deposition in neurological disorders. Top. Magn. Reson. Imaging 17,
31–40.

de Rochefort, L., Liu, T., Kressler, B., Liu, J., Spincemaille, P., Lebon, V., Wu, J.L., Wang, Y.,
2010. Quantitative susceptibility map reconstruction from MR phase data using
Bayesian regularization: validation and application to brain imaging. Magn.
Reson. Med. 63, 194–206.

Duyn, J.H., van Gelderen, P., Li, T.Q., de Zwart, J.A., Koretsky, A.P., Fukunaga, M., 2007.
High-field MRI of brain cortical substructure based on signal phase. Proc. Natl.
Acad. Sci. U. S. A. 104, 11796–11801.

Granholm, E., Bartzokis, G., Asarnow, R.F., Marder, S.R., 1993. Preliminary associations
between motor procedural learning, basal ganglia T2 relaxation times, and tardive
dyskinesia in schizophrenia. Psychiatry Res. 50, 33–44.

Haacke, E.M., Xu, Y., Cheng, Y.C., Reichenbach, J.R., 2004. Susceptibility weighted imaging
(SWI). Magn. Reson. Med. 52, 612–618.

Haacke, E.M., Cheng, N.Y., House, M.J., Liu, Q., Neelavalli, J., Ogg, R.J., Khan, A., Ayaz, M.,
Kirsch, W., Obenaus, A., 2005a. Imaging iron stores in the brain using magnetic
resonance imaging. Magn. Reson. Imaging 23, 1–25.

Haacke, E.M., Chengb, N.Y.C., House, M.J., Liu, Q., Neelavalli, J., Ogg, R.J., Khan, A., Ayaz,
M., Kirsch, W., Obenaus, A., 2005b. Imaging iron stores in the brain using magnetic
resonance imaging. Magn. Reson. Imaging 23, 1–25.

Haacke, E.M., Ayaz, M., Khan, A., Manova, E.S., Krishnamurthy, B., Gollapalli, L., Ciulla, C.,
Kim, I., Petersen, F., Kirsch, W., 2007. Establishing a baseline phase behavior in
magnetic resonance imaging to determine normal vs. abnormal iron content in
the brain. J. Magn. Reson. Imaging 26, 256–264.

Hallgren, B., Sourander, P., 1958. The effect of age on the non-haemin iron in the
human brain. J. Neurochem. 3, 41–51.

Hallgren, B., Sourander, P., 1960. The non-haemin iron in the cerebral cortex in Alzheimer's
disease. J. Neurochem. 5, 307–310.

Hansen, P.C., 2000. The L-curve and its use in the numerical treatment of inverse prob-
lems. Comput. inverse problems electrocardiol. 119–142.

Hazell, A.S., Butterworth, R.F., 1999. Hepatic encephalopathy: an update of pathophys-
iologic mechanisms. Proc. Soc. Exp. Biol. Med. 222, 99–112.

Jenkinson, M., 2003. Fast, automated, N-dimensional phase-unwrapping algorithm.
Magn. Reson. Med. 49, 193–197.

Kressler, B., de Rochefort, L., Liu, T., Spincemaille, P., Jiang, Q., Wang, Y., 2010. Nonlinear
regularization for per voxel estimation of magnetic susceptibility distributions
from MRI field maps. IEEE Trans. Med. Imaging 29, 273–281.

Lee, J., Shmueli, K., Fukunaga, M., van Gelderen, P., Merkle, H., Silva, A.C., Duyn, J.H.,
2010. Sensitivity of MRI resonance frequency to the orientation of brain tissue mi-
crostructure. Proc. Natl. Acad. Sci. U. S. A. 107, 5130–5135.

Li, W., Wu, B., Liu, C., 2011. Quantitative susceptibility mapping of human brain reflects
spatial variation in tissue composition. NeuroImage 55, 1645–1656.

Liu, T., Spincemaille, P., de Rochefort, L., Kressler, B., Wang, Y., 2009. Calculation of Sus-
ceptibility Through Multiple Orientation Sampling (COSMOS): a method for condi-
tioning the inverse problem from measured magnetic field map to susceptibility
source image in MRI. Magn. Reson. Med. 61, 196–204.

Liu, J., Liu, T., de Rochefort, L., Khalidov, I., Price, M., Wang, Y., 2010a. Quantitative sus-
ceptibility mapping by regulating the field to source inverse problem with a
sparse prior derived from the Maxwell Equation: validation and application to
brain. International Society for Magnetic Resonance in Medicine 18th Scientific
Meeting.
Liu, T., Khalidov, I., de Rochefort, L., Spincemaille, R., Liu, J., Wang, Y., 2010b. Improved
background field correction using effective dipole fitting. International Society for
Magnetic Resonance in Medicine 18th Scientific Meeting.

Liu, T., Liu, J., de Rochefort, L., Ledoux, J., Zhang, Q., Prince, M.R., Wu, J., Wang, Y., 2010c.
Measurement of iron concentration in human brain using Quantitative Susceptibility
Mapping (QSM): correlation with age. International Society for Magnetic
Resonance in Medicine 18th Scientific Meeting.

Lustig, M., Donoho, D., Pauly, J.M., 2007. Sparse MRI: the application of compressed
sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195.

Marques, J.P., Bowtell, R., 2005. Application of a fourier-based method for rapid calcu-
lation of field inhomogeneity due to spatial variation of magnetic susceptibility.
Concepts Magn. Reson. Part B-Magn. Reson. Eng. 25B, 65–78.

Martin, W.R., Roberts, T.E., Ye, F.Q., Allen, P.S., 1998. Increased basal ganglia iron in
striatonigral degeneration: in vivo estimation with magnetic resonance. Can. J.
Neurol. Sci. 25, 44–47.

Mattis, S., 1988. Dementia Rating Scale. Psychological Assessment Resources, Odessa,
FL.

Michaeli, S., Oz, G., Sorce, D.J., Garwood, M., Ugurbil, K., Majestic, S., Tuite, P., 2007.
Assessment of brain iron and neuronal integrity in patients with Parkinson's
disease using novel MRI contrasts. Mov. Disord. 22, 334–340.

Neelavalli, J., Cheng, Y.C.N., Jiang, J., Haacke, E.M., 2009. Removing background phase
variations in susceptibility-weighted imaging using a fast, forward-field calcula-
tion. J. Magn. Reson. Imaging 29, 937–948.

Ogg, R.J., Langston, J.W., Haacke, E.M., Steen, R.G., Taylor, J.S., 1999. The correlation
between phase shifts in gradient-echo MR images and regional brain iron concen-
tration. Magn. Reson. Imaging 17, 1141–1148.

Pfefferbaum, A., Adalsteinsson, E., Rohlfing, T., Sullivan, E.V., 2009. MRI estimates of
brain iron concentration in normal aging: comparison of field-dependent (FDRI)
and phase (SWI) methods. NeuroImage 47, 493–500.

Pfefferbaum, A., Adalsteinsson, E., Rohlfing, T., Sullivan, E.V., 2010. Diffusion tensor
imaging of deep gray matter brain structures: effects of age and iron concentration.
Neurobiol. Aging 31, 482–493.

Raz, N., Rodrigue, K.M., Haacke, E.M., 2007. Brain aging and its modifiers: insights from
in vivo neuromorphometry and susceptibility weighted imaging. Ann. N. Y. Acad.
Sci. 1097, 84–93.

Rohlfing, T., Maurer Jr., C.R., 2003. Nonrigid image registration in shared-memory mul-
tiprocessor environments with application to brains, breasts, and bees. IEEE Trans.
Inf. Technol. Biomed. 7, 16–25.

Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A., 2010. The SRI24 multichannel
atlas of normal adult human brain structure. Hum. Brain Mapp. 31, 798–819.

Salomir, R., De Senneville, B.D., Moonen, C.T.W., 2003. A fast calculation method for
magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility.
Concepts Magn. Reson. Part B-Magn. Reson. Eng. 19B, 26–34.

Schenck, J.F., 1996. The role of magnetic susceptibility in magnetic resonance imag-
ing: MRI magnetic compatibility of the first and second kinds. Med. Phys. 23,
815–850.

Schweser, F., Deistung, A., Lehr, B.W., Reichenbach, J.R., 2011a. Quantitative imaging of
intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo
brain iron metabolism? NeuroImage 54, 2789–2807.

Schweser, F., Atterbury, M., Deistung, A., Lehr, B.W., Sommer, K., Reichenbach, J.R., 2011b.
Harmonic phase subtractionmethods are prone to B1 background components. Inter-
national Society for Magnetic Resonance in Medicine 19th Scientific Meeting.

Smith, S.M., 2002. Fast robust automated brain extraction. Hum. BrainMapp. 17, 143–155.
Sullivan, E.V., Adalsteinsson, E., Rohlfing, T., Pfefferbaum, A., 2009. Relevance of iron

deposition in deep gray matter brain structures to cognitive and motor perfor-
mance in healthy elderly men and women: exploratory findings. Brain Imaging
Behav. 3, 167–175.

Wharton, S., Bowtell, R., 2010. Whole-brain susceptibility mapping at high field: a com-
parison of multiple- and single-orientation methods. NeuroImage 53, 515–525.


	MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping
	Introduction
	Methods
	Susceptibility and MR signal phase
	Background effect removal from the field map
	Susceptibility inversion with ℓ1 regularization
	Susceptibility inversion with ℓ2 regularization
	Effect of regularization parameters λ and β
	Selection of regularization parameters λ and β
	Dataset acquired in younger and elderly adults used for comparison of regularized QSM and FDRI
	Subjects
	Image acquisition protocols
	FDRI acquisition
	Susceptibility-weighted image acquisition
	Image registration
	Region-of-Interest (ROI) identification
	Statistical analysis

	Results
	Correlations of FDRI and QSM values with postmortem iron concentrations
	Correlations between in vivo QSM and FDRI iron concentration metrics
	Age differences in regional iron concentration: QSM and FDRI
	Age differences identified with regularized QSM
	Age differences identified with FDRI

	Discussion
	Conclusion
	Conflict of interest statement
	Acknowledgments
	References


