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Undersampled DSI 

 To reduce scan time, undersample q-space  

 Use sparsity prior to reconstruct the pdfs [1] 
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i. fix D and solve for sparse X using OMP 
 

ii. update D and X using SVD based technique 

 

Step2: Use dictionary to impose sparsity constraint 

 

 

 

K-SVD algorithm for DSI 

 Is pdf sparse in TV and wavelet?  
 

 Use a transform tailored for sparse representation of pdfs 

 

 

 

 

Step1: Create dictionary from a training pdf dataset [P] 
 

𝑚𝑖𝑛𝐏,𝐃        𝒙𝑖 0    subject to    𝐏 − 𝐃𝐗 𝐹
2
≤ 𝜖  

𝑖
 

1. Aharon M, et al IEEE Trans Signal Processing 2006 

𝑚𝑖𝑛 𝒙 1   such that   𝐅Ω𝐃𝒙 = 𝒒 

2. Gorodnitsky IF, et al IEEE Trans Signal processing 1997 

K-SVD[1] iterative algorithm was used to obtain [D] 
 

FOCUSS[2] was used to provide parameter free recon 
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† MAGNETOM Skyra CONNECTOM   

   system (Siemens Healthcare) 

Gmax = 300 mT / m 
 

Conventional =  45 mT / m 
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 Comparison of methods: 

i. Wavelet + TV   (Menzel et al [2]) 

ii. L1-FOCUSS   (apply L1 penalty on pdfs) 

iii. Dictionary-FOCUSS  (proposed) 
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Methods 

 3 healthy volunteers,  3T Siemens Skyra 

 Connectom gradients,  64-chan head coil [1] 

 2.3 mm isotropic,   bmax = 8000 s/mm2 

 515 q-space points,  50 min scan time 

 

 10 average collected at 5 q-space points 

Low-noise data, serve as ground truth 

 

 Tractography comparison:  
 

Fully-sampled vs. R = 3 Dictionary-FOCUSS 
 

Fractional Anisotropy compared for 18 major fiber bundles  
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same 𝓁2 norm as 10 average 

poor performance good  
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 SNR drops substantially at the outer q-space 
 

 RMSE computed relative to 1 average fully-sampled data 

includes noise and recon error 

 

 

 

 

 

 

 

 

 

 To isolate recon error, collected 10 avg on 5 q-space points 
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 RMSE computed relative to 1 average fully-sampled data 
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q = [5,0,0] 

1 avg fully-sampled 10 avg fully-sampled 



 SNR drops substantially at the outer q-space 
 

 RMSE computed relative to 1 average fully-sampled data 

includes noise and recon error 

 

 

 

 

 

 

Lower RMSE than 

acquired data 
 

Denoising effect [1] 
 

 

 

1. Patel V, et al ISBI 2011, p1805 
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Fully-sampled data Dictionary-FOCUSS recon 
with 3-fold acceleration  

Average Fractional Anisotropy 

for 18 labeled white-matter pathways [1] 
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R=1 
R=3 

Tractography solutions for subject A 

SLFP 
FMAJ 

FMIN 

CST 

CCG 

ATR 

Fully-sampled data Dictionary-FOCUSS recon 
with 3-fold acceleration  

Mean FA error = 3% 

1. Yendiki A et al  

Front Neuroinform 2011 
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Concluding Remarks 

 Up to 2-times RMSE reduction in pdf domain 
 

Dictionary-FOCUSS (proposed) vs. Wavelet+TV [1] 

 

 3-fold accelerated Dict-FOCUSS  ≈  Fully-sampled data 
 

Low-noise 10 average data validation 
 

Tractography comparison 
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 3-fold accelerated Dict-FOCUSS  ≈  Fully-sampled data 
 

 

 Parallel imaging with Simultaneous Multi-Slice (SMS) [2] 
 

3-fold acceleration with minor loss in SNR  
 

Orthogonal to CS,  3×3 = 9-fold acceleration combined 

1. Menzel MI et al MRM 2011 

2. Setsompop K et al MRM 2012 



Concluding Remarks 

 Up to 2-times RMSE reduction in pdf domain 
 

Dictionary-FOCUSS (proposed) vs. Wavelet+TV [1] 

 

 3-fold accelerated Dict-FOCUSS  ≈  Fully-sampled data 
 

 

 

 Dictionary from single slice seems to generalizes to other slices 

                                  and to other subjects 

 

 

1. Menzel MI et al MRM 2011 
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 Full-brain processing: DAYS of computation time 

 

 Do dictionaries generalize across healthy–patient populations? 
 

     

 

 Matlab code online at: 

http://web.mit.edu/berkin/www/software.html 

 

across different age groups? 

http://web.mit.edu/berkin/www/software.html
http://web.mit.edu/berkin/www/software.html
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