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Diffusion Spectrum Imaging (DSI) 

 DSI offers a complete description of water diffusion 
 

 And reveals complex distributions of fiber orientations 
 

 However, DSI requires full sampling of q-space 
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Diffusion Spectrum Imaging (DSI) 

Q-space of a single voxel 

515 directions 

Sampling full q-space takes ~1 hour 
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Undersampled DSI 

 To reduce scan time, undersample q-space  
 

 Use sparsity prior to recon the pdfs via Compressed Sensing 
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undersampled  

DFT pdf q-samples wavelet total variation 
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ii. Our previous work: Dictionary-FOCUSS [2] 

3. Aharon et al IEEE TSP 2006 

4. Gorodnitsky et al IEEE TSP 1997 

𝑚𝑖𝑛𝒑 𝐅Ω𝒑 − 𝒒 2
2
+ 𝛼 ∙ 𝚿𝒑 1 + 𝛽 ∙ TV(𝒑) 

 Create a dictionary 𝐃 from a training dataset of pdfs using 

K-SVD algorithm [3] → tailored for sparse representation 
 

1. Menzel et al MRM 2011 

2. Bilgic et al MRM 2012 

 

 Impose sparsity constraint via FOCUSS algorithm [4] by solving 

𝑚𝑖𝑛 𝒙 1   such that   𝐅Ω𝐃𝒙 = 𝒒 
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ii. Our previous work: Dictionary-FOCUSS [2] 

𝑚𝑖𝑛𝒑 𝐅Ω𝒑 − 𝒒 2
2
+ 𝛼 ∙ 𝚿𝒑 1 + 𝛽 ∙ TV(𝒑) 

 Create a dictionary 𝐃 from a training dataset of pdfs using 

K-SVD algorithm [3] → tailored for sparse representation 
  

 Impose sparsity constraint via FOCUSS algorithm [4] by solving 

𝑚𝑖𝑛 𝒙 1   such that   𝐅Ω𝐃𝒙 = 𝒒 

Dictionary transform 

coefficients 

Previous work on DSI recon 
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 Dictionary-FOCUSS [1] yields up to 2-times RMSE reduction 

using compared to Wavelet & TV [2] 
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Previous work on DSI recon 

 Dictionary-FOCUSS [1] yields up to 2-times RMSE reduction 

using compared to Wavelet & TV [2] 

 

 Both Compressed Sensing recons are iterative, with 

processing times up to 1 sec / voxel 
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Previous work on DSI recon 

 Dictionary-FOCUSS [1] yields up to 2-times RMSE reduction 

using compared to Wavelet & TV [2] 

 

 Both Compressed Sensing recons are iterative, with 

processing times up to 1 sec / voxel 

 

 Full-brain recon for 105 voxels: ~ 1 DAY of computation 
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Proposed methods  

 We propose two L2-based methods: 
 

i. Proposed I: Principal Component Analysis (PCA) 
 

Summarize the training dataset with dominant eigenvectors 
 

Simple training and recon : linear algebra 

 

ii. Proposed II: Dictionary-L2 
 

 Instead of L1-, apply L2-regularization wrt dictionary 
 

Fast recon with closed form solution 
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Proposed methods  

 We propose two L2-based methods: 
 

i. Proposed I: Principal Component Analysis (PCA) 
 

ii. Proposed II: Dictionary-L2 

 

 Contributions: 
 

The two proposed methods are 100-fold faster with 

image quality similar to Dictionary-FOCUSS 
 

We show that crucial component is presence of dictionary, 

not the sparsity constraint 
 

At 3-fold acceleration, proposed recons comparable to 

fully-sampled data in pdf, odf and fiber domains 

 



Proposed I: PCA Reconstruction 

 PCA: approximates data points using a linear combo of them 

to retain the maximum variance in the dataset 
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 PCA: approximates data points using a linear combo of them 

to retain the maximum variance in the dataset 
 

 Start with a training set of pdfs 𝐏 

 Subtract the mean, diagonalize the covariance matrix: 

 

 

 

 

𝐙 = 𝐏 − 𝒑𝑚𝑒𝑎𝑛 

𝐙𝐙𝐻 = 𝐐𝚲𝐐𝐻 
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Proposed I: PCA Reconstruction 

 PCA: approximates data points using a linear combo of them 

to retain the maximum variance in the dataset 
 

 Start with a training set of pdfs 𝐏 

 Subtract the mean, diagonalize the covariance matrix: 

 

 

 

 Pick the first 𝑇 columns of 𝐐 corresponding to largest eigvals: 𝐐𝑇 

 

𝐙 = 𝐏 − 𝒑𝑚𝑒𝑎𝑛 

𝐙𝐙𝐻 = 𝐐𝚲𝐐𝐻 

𝒑𝒄𝒂 = 𝐐𝑇
𝐻(𝒑 − 𝒑𝑚𝑒𝑎𝑛) 

𝑇 - dimensional 

pca coefficients 
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Proposed I: PCA Reconstruction 

 PCA: approximates data points using a linear combo of them 

to retain the maximum variance in the dataset 
 

 Start with a training set of pdfs 𝐏 

 Subtract the mean, diagonalize the covariance matrix: 

 

 

 

 Pick the first 𝑇 columns of 𝐐 corresponding to largest eigvals: 𝐐𝑇 

 

 

 The location of 𝒑𝒄𝒂 in the pdf space, 

 

 

𝐙 = 𝐏 − 𝒑𝑚𝑒𝑎𝑛 

𝐙𝐙𝐻 = 𝐐𝚲𝐐𝐻 

𝒑𝒄𝒂 = 𝐐𝑇
𝐻(𝒑 − 𝒑𝑚𝑒𝑎𝑛) 

𝒑𝑻 = 𝐐𝑇𝒑𝒄𝒂 + 𝒑𝑚𝑒𝑎𝑛 
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Proposed I: PCA Reconstruction 

 PCA: approximates data points using a linear combo of them 

to retain the maximum variance in the dataset 
 

 Least-squares approximation in 𝑇 - dimensions, 

 

 

 

 

 

 

 

𝑚𝑖𝑛 𝐅Ω𝒑𝑻 − 𝒒 2
2
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Proposed I: PCA Reconstruction 

 PCA: approximates data points using a linear combo of them 

to retain the maximum variance in the dataset 
 

 Least-squares approximation in 𝑇 - dimensions, 

 

 

 

 In PCA coordinates, 

 

 

 

𝑚𝑖𝑛𝒑𝒄𝒂 𝐅Ω𝐐𝑇𝒑𝒄𝒂 − (𝒒 − 𝐅Ω𝒑𝑚𝑒𝑎𝑛) 2
2 

𝑚𝑖𝑛 𝐅Ω𝒑𝑻 − 𝒒 2
2
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Proposed I: PCA Reconstruction 

 PCA: approximates data points using a linear combo of them 

to retain the maximum variance in the dataset 
 

 Least-squares approximation in 𝑇 - dimensions, 

 

 

 

 In PCA coordinates, 

 

 

 

 Closed-form solution: 

𝑚𝑖𝑛𝒑𝒄𝒂 𝐅Ω𝐐𝑇𝒑𝒄𝒂 − (𝒒 − 𝐅Ω𝒑𝑚𝑒𝑎𝑛) 2
2 

𝒑𝒄𝒂 = pinv(𝐅Ω𝐐𝑇)(𝒒 − 𝐅Ω𝒑𝑚𝑒𝑎𝑛) 

compute once 

𝑚𝑖𝑛 𝐅Ω𝒑𝑻 − 𝒒 2
2
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Proposed II: Dictionary-L2 

 Dictionary-FOCUSS iteratively solves 

 

 

 Instead, consider 

 

 
𝑚𝑖𝑛 𝐅Ω𝐃𝒙 − 𝒒 2

2
+ 𝜆 ∙ 𝒙 𝟐

𝟐
 

𝑚𝑖𝑛 𝒙 1   such that   𝐅Ω𝐃𝒙 = 𝒒 
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Proposed II: Dictionary-L2 

 Dictionary-FOCUSS iteratively solves 

 

 

 Instead, consider 

 

 
 

 Solution:  

 

 

 

𝒙 = ((𝐅Ω𝐃)
𝐻𝐅Ω𝐃 + 𝜆𝐈)

−1(𝐅Ω𝐃)
𝐻𝑞 

𝑚𝑖𝑛 𝒙 1   such that   𝐅Ω𝐃𝒙 = 𝒒 

𝑚𝑖𝑛 𝐅Ω𝐃𝒙 − 𝒒 2
2
+ 𝜆 ∙ 𝒙 𝟐

𝟐
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Proposed II: Dictionary-L2 

 Dictionary-FOCUSS iteratively solves 

 

 

 Instead, consider 

 

 
 

 Solution:  

 

 

 

Singular Value Decomposition: 𝐅Ω𝐃 = 𝐔𝚺𝑽
𝐻 

𝑚𝑖𝑛 𝒙 1   such that   𝐅Ω𝐃𝒙 = 𝒒 

𝑚𝑖𝑛 𝐅Ω𝐃𝒙 − 𝒒 2
2
+ 𝜆 ∙ 𝒙 𝟐

𝟐
 

𝒙 = ((𝐅Ω𝐃)
𝐻𝐅Ω𝐃 + 𝜆𝐈)

−1(𝐅Ω𝐃)
𝐻𝑞 
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Proposed II: Dictionary-L2 

 Dictionary-FOCUSS iteratively solves 

 

 

 Instead, consider 

 

 
 

 Solution:  

 

 

 

Singular Value Decomposition: 𝐅Ω𝐃 = 𝐔𝚺𝑽
𝐻 

𝒙 = 𝐕𝚺+𝐔𝐻𝑞 𝚺+ = (𝚺𝐻𝚺 + 𝜆𝐈)−1𝚺𝐻 

compute once 

𝑚𝑖𝑛 𝒙 1   such that   𝐅Ω𝐃𝒙 = 𝒒 

𝑚𝑖𝑛 𝐅Ω𝐃𝒙 − 𝒒 2
2
+ 𝜆 ∙ 𝒙 𝟐

𝟐
 

𝒙 = ((𝐅Ω𝐃)
𝐻𝐅Ω𝐃 + 𝜆𝐈)

−1(𝐅Ω𝐃)
𝐻𝑞 
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Proposed II: Dictionary-L2 

 Dictionary-FOCUSS iteratively solves 

 

 

 Dictionary 𝐃 obtained by K-SVD training 

 

 
 

 Solution:  

 

 

𝑚𝑖𝑛 𝒙 1   such that   𝐅Ω𝐃𝒙 = 𝒒 

𝒙 = ((𝐅Ω𝐃)
𝐻𝐅Ω𝐃 + 𝜆𝐈)

−1(𝐅Ω𝐃)
𝐻𝑞 
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Proposed II: Dictionary-L2 

 Dictionary-FOCUSS iteratively solves 

 

 

 Dictionary 𝐃 obtained by K-SVD training 

 

 
 

 Solution:  

 

 Proposed: use training dataset as dictionary, 𝐃 = 𝐏 
 

 Both recon and training simplified    

 

𝑚𝑖𝑛 𝒙 1   such that   𝐅Ω𝐃𝒙 = 𝒒 

𝒙 = ((𝐅Ω𝐃)
𝐻𝐅Ω𝐃 + 𝜆𝐈)

−1(𝐅Ω𝐃)
𝐻𝑞 
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DSI Acquisition 

 2.3 mm isotropic with bmax = 8000 s/mm2   at  3T 

 

 Connectom gradients and 64-chan head coil [1] 

 

 515 q-space points collected in 50 min 

 

 Two subjects scanned → dictionary training is based on a 

subject different from the test subject 
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Comparison of methods 

 Previous methods: 
 

i. CDF 9/7 Wavelet & TV [1,2] 

ii. Dictionary-FOCUSS [3] 
 

 New methods: 
 

iii. Proposed I: PCA 

iv. Proposed II: Dictionary-L2 
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Comparison of methods 

 Previous methods: 
 

i. CDF 9/7 Wavelet & TV [1,2] 

ii. Dictionary-FOCUSS [3] 
 

 New methods: 
 

iii. Proposed I: PCA 

iv. Proposed II: Dictionary-L2 

 

 Recon experiments at accelerations R = 3, 5 and 9 
 

 Compare to fully-sampled in terms of pdf, odf and fiber tracts 
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1. Menzel et al MRM 2011 

2. Merlet et al ISMRM 2012 

3. Bilgic et al MRM 2012 



1 avg 10 avg 

 Previous methods: 
 

i. CDF 9/7 Wavelet & TV [1,2] 

ii. Dictionary-FOCUSS [3] 
 

 New methods: 
 

iii. Proposed I: PCA 

iv. Proposed II: Dictionary-L2 
 

 Comparison to low-noise data: 

Acquire 10 average data at 5 q-space points 
 

 

 

 

 

 

Disentangle RMSE due to recon error and noise 

 

Comparison of methods 
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15.9% avg RMSE 
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Wavelet & TV 

7.6% avg RMSE 
 

11 min 

Dictionary-FOCUSS 

Acceleration 
 

R = 3 
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Test data:  Subject A, Slice 40 
 

Training data: Subject B, Slice 30 

8.6% avg RMSE 8.9% avg RMSE  8.6% avg RMSE 
 

20 % 

0 % 

Acceleration 
 

R = 5 

9.9% avg RMSE 11.0% avg RMSE  10.1% avg RMSE 
 

20 % 

0 % 

Acceleration 
 

R = 9 

26.6% avg RMSE  

Proposed I: 

PCA 

Proposed II:  

Dictionary-L2 

27.7% avg RMSE  
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Test data:  Subject B, Slice 25 
 

Training data: Subject A, Slice 30 Proposed I: 

PCA 

Proposed II:  

Dictionary-L2 
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Test data:  Subject B, Slice 25 
 

Training data: Subject A, Slice 30 
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Test data:  Subject B, Slice 25 
 

Training data: Subject A, Slice 30 

12.3% avg RMSE 12.8% avg RMSE  12.2% avg RMSE 
 

23 % 

0 % 

Acceleration 
 

R = 5 

13.8% avg RMSE 14.8% avg RMSE  13.9% avg RMSE 
 

23 % 

0 % 

Acceleration 
 

R = 9 

Proposed I: 

PCA 

Proposed II:  

Dictionary-L2 

28.6% avg RMSE 

28.8% avg RMSE 
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Q-space recon error  

 Wavelet & TV : large error at outer q-space 
 

 Dictionary-based methods : mild increase in error   
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 Compute RMSE in missing q-space relative to fully-sampled data  

Q-space recon error  

 Dictionary-FOCUSS and the proposed methods have comparable 

performance 

q=[5,0,0] 

q-space recon at q=[5,0,0] 

Dictionary- 

FOCUSS 

Proposed I:  

PCA 

Fully-sampled 

1 average 

Proposed II:  

Dictionary-L2 

Fully-sampled 

10 average 
Wavelet & TV 

scaled 10x 



Comparison to Low-Noise dataset  

magnify 

 Compute RMSEs relative to 10 average fully-sampled data 



Comparison to Low-Noise dataset  

 Compute RMSEs relative to 10 average fully-sampled data 

 

 

 

 

 

 

 

 

 
 At R = 3, all dictionary-based methods have less error than   

1 average fully-sampled data 



Fully-sampled Wavelet & TV 

Proposed II: Dictionary-L2 

Dictionary-FOCUSS 

Proposed I: PCA 
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Fully-sampled Wavelet & TV Dictionary-FOCUSS 

0.55 

0 

FA map 

Proposed II: Dictionary-L2 Proposed I: PCA 



Fully-sampled PCA at R = 3  Dictionary-L2 at R = 3  



Fully-sampled PCA at R = 3  Dictionary-L2 at R = 3  

 Based on deterministic DSI tractography, 18 white matter pathways 

were automatically labeled [1] 

1. Yendiki et al Front Neuroinform 2011 

PCA:  3.2% 

Dict-L2:  3.4% 

PCA:  5.0% 

Dict-L2:  6.0% 

Fractional Anisotropy 

average error 

Mean Diffusivity 

average error 
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FOCUSS in terms of pdf, odf and q-space recon quality 
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comparable to fully-sampled acquisition 

 

 Matlab code online: 

 http://web.mit.edu/berkin/www/software.html 

http://web.mit.edu/berkin/www/software.html
http://web.mit.edu/berkin/www/software.html
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