Regularized QSM in Seconds

Berkin Bilgic¹, Itthi Chatnuntawech², Audrey P. Fan², Elfar Adalsteinsson²,³

¹Martinos Center for Biomedical Imaging, Charlestown, MA, USA
²MIT, Cambridge, MA USA
³Harvard-MIT Health Sciences and Technology, Cambridge, MA USA
Declaration of Relevant Financial Interests or Relationships

Speaker Name: Berkin Bilgic

I have no relevant financial interest or relationship to disclose with regard to the subject matter of this presentation.
Quantitative Susceptibility Mapping (QSM)

- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility χ
- Susceptibility correlates well with tissue iron concentration, especially in iron rich deep gray matter structures [1,2]

[1] Langkammer et al., Neuroimage 2012
Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility χ

Susceptibility correlates well with tissue iron concentration, especially in iron rich deep gray matter structures [1,2]

Susceptibility mapping requires the solution of an inverse problem,

$$F^H \cdot D \cdot F \cdot \chi = \phi$$

- χ is the unknown susceptibility
- ϕ is the unwrapped phase
- D is the diagonal matrix
- F is the DFT

[1] Langkammer et al., Neuroimage 2012
Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility χ.

Susceptibility correlates well with tissue iron concentration, especially in iron rich deep gray matter structures [1,2].

Susceptibility mapping requires the solution of an inverse problem,

$$F^H D F \chi = \phi$$

to be estimated measured

[1] Langkammer et al., Neuroimage 2012
Quantitative Susceptibility Mapping (QSM)

- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility χ
- Susceptibility correlates well with tissue iron concentration, especially in iron rich deep gray matter structures
- Susceptibility mapping requires the solution of an inverse problem,

$$F^H D F \chi = \phi$$

$$D = \frac{1}{3} - \frac{k_z^2}{k^2}$$

Undersamples k-space on a conical surface
Regularized QSM

- Solution of inverse problem is facilitated by regularization that imposes prior knowledge [1]

\[
\chi = \arg\min_{\chi} \| \phi - F^H D F \chi \|_2^2 + \lambda \cdot \| G \chi \|_2^2
\]

- data consistency
- \(\ell_2 \) over gradients

Regularized QSM

- Solution of inverse problem is facilitated by regularization that imposes prior knowledge [1]

\[
\chi = \arg\min_\chi \| \phi - F^H D F \chi \|_2^2 + \lambda \cdot \| G \chi \|_2^2
\]

- data consistency
- \(\ell_2 \) over gradients

\[
G = \begin{bmatrix}
G_x \\
G_y \\
G_z
\end{bmatrix}
\]

gradient in 3D

Regularized QSM

- Solution of inverse problem is facilitated by regularization that imposes prior knowledge [1]

\[\chi = \arg\min_{\chi} \| \phi - F^H DF \chi \|_2^2 + \lambda \cdot \| G \chi \|_2^2 \]

- Prior: underlying susceptibility map is smooth

Regularized QSM

- Solution of inverse problem is facilitated by regularization that imposes prior knowledge [1]

\[
\chi = \arg\min_{\chi} \| \phi - F^H D F \chi \|_2^2 + \lambda \cdot \| G \chi \|_2^2
\]

- Existing methods work iteratively [1,2], requiring ~30 minutes for a 3D volume → not feasible

- We address this with fast recon in ~1 second

Regularized QSM

- Solution of inverse problem is facilitated by regularization that imposes prior knowledge [1]

\[\chi = \text{argmin}_\chi \| \phi - F^H DF \chi \|_2^2 + \lambda \cdot \| G \chi \|_2^2 \]

- Solution can be evaluated in closed-form

\[\chi = (F^H D^2 F + \lambda \cdot G^H G)^{-1} F^H DF \phi \]

- The minimizer can be computed efficiently given that the matrix inversion is rapidly performed

Fast Regularized QSM

- Solution can be evaluated in closed-form

\[\chi = (F^H D^2 F + \lambda \cdot G^H G)^{-1} F^H DF \phi \]
Fast Regularized QSM

- Solution can be evaluated in closed-form

\[\chi = (F^H D^2 F + \lambda \cdot G^H G)^{-1} F^H D F \phi \]

- Gradient along x-axis can be represented in k-space by multiplication with a diagonal matrix \(E_x \)

\[G_x = F^H E_x F \quad \text{where} \quad E_x(i, i) = 1 - e^{(-2\pi \sqrt{-1}k_x(i,i)/N_x)} \]
Fast Regularized QSM

- Solution can be evaluated in closed-form
 \[
 \chi = (F^H D^2 F + \lambda \cdot G^H G)^{-1} F^H D F \phi
 \]

- Gradient along x-axis can be represented in k-space by multiplication with a diagonal matrix \(E_x \)
 \[
 G_x = F^H E_x F \quad \text{where} \quad E_x(i, i) = 1 - e^{(-2\pi\sqrt{-1}k_x(i,i)/N_x)}
 \]

- \(E_x \) is simply the k-space representation of the difference operator \(\delta_x - \delta_{x-1} \)
Fast Regularized QSM

- Solution can be evaluated in closed-form
 \[\chi = \left(F^H D^2 F + \lambda \cdot G^H G \right)^{-1} F^H D F \phi \]

- Gradient along x-axis can be represented in k-space by multiplication with a diagonal matrix \(E_x \)
 \[G_x = F^H E_x F \quad \text{where} \quad E_x(i, i) = 1 - e^{(-2\pi\sqrt{-1} k_x(i,i)/N_x)} \]

- With this formulation, closed-form solution becomes
 \[\chi = F^H D \left[D^2 + \lambda \cdot (E_x^2 + E_y^2 + E_z^2) \right]^{-1} F \phi \]

 all matrices diagonal
Fast Regularized QSM

- Solution can be evaluated in closed-form

\[\chi = (F^H D^2 F + \lambda \cdot G^H G)^{-1} F^H D F \phi \]

- Gradient along x-axis can be represented in k-space by multiplication with a diagonal matrix \(E_x \)

\[G_x = F^H E_x F \]

where \(E_x(i, i) = 1 - e^{(-2\pi \sqrt{-1} k_x(i,i)/N_x)} \)

- With this formulation, closed-form solution becomes

\[\chi = F^H D \left[D^2 + \lambda \cdot (E_x^2 + E_y^2 + E_z^2) \right]^{-1} F \phi \]

- **Total cost:** Two FFTs and multiplication of diagonal matrices
Contributions

- Proposed closed-form method is 1000-times faster than iterative Conjugate Gradient solver in [1,2]

[1] de Rochefort et al., MRM 2010
Contributions

- Proposed closed-form method is 1000-times faster than iterative Conjugate Gradient solver in [1,2]

- Proposed method yields exact minimizer while iterative methods converge to it

[1] de Rochefort et al., MRM 2010
Contributions

- Proposed closed-form method is 1000-times faster than iterative Conjugate Gradient solver in [1,2]

- Proposed method yields exact minimizer while iterative methods converge to it

- Automatic selection of regularization parameter λ is possible: Trace L-curve with closed-form method in a minute

[1] de Rochefort et al., MRM 2010
Contributions

- Proposed closed-form method is 1000-times faster than iterative Conjugate Gradient solver in [1,2]

- Proposed method yields exact minimizer while iterative methods converge to it

- Automatic selection of regularization parameter λ is possible: Trace L-curve with closed-form method in a minute

- Combined with fast background removal methods like SHARP [3], enables real-time QSM

[1] de Rochefort et al., MRM 2010
Comparison of methods

- **Proposed method:**
 - Closed form QSM

- **Previous method:**
 - Iterative QSM with Conjugate Gradient [1,2] converges to closed-form solution

[1] de Rochefort et al., MRM 2010
Comparison of methods

- **Proposed method:**
 - Closed form QSM

- **Previous method:**
 - Iterative QSM with Conjugate Gradient [1,2] converges to closed-form solution
 - Initialize with Thresholded K-space Division map [3]
 - Terminate when change in susceptibility is less than 1%

[1] de Rochefort et al., MRM 2010
Regularized QSM Methods

- **Numerical Phantom**
 - Three compartments (gray, white, CSF) with constant χ
 - Phase ϕ computed from true χ, and Gaussian noise added
 - Regularization param λ chosen to minimize RMSE in χ recon

[1] Liu et al., NMR in Biomed 2011
Regularized QSM Methods

- **Numerical Phantom**
 - Three compartments (gray, white, CSF) with constant χ
 - Phase ϕ computed from true χ, and Gaussian noise added
 - Regularization param λ chosen to minimize RMSE in χ recon

- **In Vivo 3D SPGR**
 - Healthy subject at 1.5T with resolution $0.94 \times 0.94 \times 2.5\text{mm}^3$
 - Regularization parameter λ chosen based on L-curve
 - Background phase removal with dipole fitting [1]

- Computations done on workstation with 32 CPU processors and 128 GB memory

[1] Liu et al., NMR in Biomed 2011
Numerical Phantom

Noisy phase ϕ

- Error due to noise: 5.0% RMSE
- RMSE $= 0.01$ ppm

Closed-form QSM in 1.1 seconds

Closed-form QSM error relative to True χ

- True χ known

MAGNIFIED 3 TIMES
 Numerical Phantom

- Noisy phase ϕ

- Error due to noise: 5.0% RMSE

Closed-form QSM in 1.1 seconds

<table>
<thead>
<tr>
<th>QSM Method</th>
<th>Recon Time</th>
<th>Error relative to True χ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Closed-Form</td>
<td>1.1 seconds</td>
<td>16.1 % RMSE</td>
</tr>
<tr>
<td>Conjugate Grad, 80 iters</td>
<td>33 minutes</td>
<td>16.8 % RMSE</td>
</tr>
</tbody>
</table>
In Vivo QSM

Tissue phase ϕ

Closed-form QSM in 0.6 seconds

Closed-form and Iterative QSM difference: 0.6%

True χ not known

MAGNIFIED 100 TIMES
In Vivo QSM

Tissue phase ϕ

Closed-form QSM in 0.6 seconds

<table>
<thead>
<tr>
<th>QSM Method</th>
<th>Recon Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Closed-Form</td>
<td>0.6 seconds</td>
</tr>
<tr>
<td>Conjugate Gradient, 80 iters</td>
<td>18 minutes</td>
</tr>
</tbody>
</table>
Tracing the L-curve

- Computing \(\chi \) for 25 different values of \(\lambda \): 50 seconds
Tracing the L-curve

\[\| G \chi \|_2 \]

\[\| \phi - F^H D F \chi \|_2 \]

- Computing \(\chi \) for 25 different values of \(\lambda \): 50 seconds
- Find optimal \(\lambda \) by computing the curvature of L-curve

Largest curvature on L-curve: \(\lambda = 0.013 \)
Tracing the L-curve

\[\| Gx \|_2 \]

\[\| \phi - F^HDFx \|_2 \]

Under-regularized \(\lambda = 0.001 \)
Tracing the L-curve

\[\| \mathbf{G} \chi \|_2 \]

Under-regularized \(\lambda = 0.001 \)

Optimally-regularized \(\lambda = 0.013 \)
Tracing the L-curve

\[\|G\chi\|_2 \]

Under-regularized \(\lambda = 0.001 \)

Optimally-regularized \(\lambda = 0.013 \)

Over-regularized \(\lambda = 0.091 \)
Conclusion

- Proposed closed form recon for L2-regularized QSM
- 1000-times faster recon compared to Conjugate Gradient solver [1,2]
- Automatic selection for λ feasible with L-curve in a minute
- Software Download:

 http://web.mit.edu/berkin/www/software.html

[1] de Rochefort et al., MRM 2010
Acknowledgments

- **Sponsors:**
 - MIT-CIMIT Medical Engineering Fellowship
 - Siemens Healthcare
 - Siemens-MIT Alliance

- **Grants:**
 - K99EB012107, U01MH093765,
 - R01EB006847, R01EB007942,
 - R01EB000790, P41RR14075