Rapid QSM Acquisition with Wave-CAIPI

B. Bilgic1,2, B. A. Gagoski2,3, S.F. Cauley1,2, A.P. Fan1,4, J.R. Polimeni1,2, P.E. Grant2,3, L.L. Wald1,2,5, K. Setsompop1,2

1 Martinos Center for Biomedical Imaging, Charlestown, MA,
2 Harvard Medical School, Boston, MA
3 Boston Children's Hospital, Boston, MA
4 Massachusetts Institute of Technology, Cambridge, MA
5 Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
Highly Accelerated 3D Cartesian Imaging

- Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets

Highly Accelerated 3D Cartesian Imaging

- Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets

Highly Accelerated 3D Cartesian Imaging

- Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets.

Highly Accelerated 3D Cartesian Imaging

- Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets.
Wave-CAIPI Sampling

- Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets.

- Wave-CAIPI: 2D CAIPI + BPE in 2 directions
- Spread aliasing in 3D to take full advantage of 3D coil profiles

Wave-CAIPI causes voxel spreading in 3 dimensions

- Combination of G_y and G_z gradients with inter-slice shifts yields voxel spreading across three dimensions
Wave-CAIPI causes voxel spreading in 3 dimensions

- Combination of \(G_y \) and \(G_z \) gradients with inter-slice shifts yields voxel spreading across three dimensions.
Wave-CAIPI causes voxel spreading in 3 dimensions

- Combination of G_y and G_z gradients with inter-slice shifts yields voxel spreading across three dimensions
Wave-CAIPI causes voxel spreading in 3 dimensions

- Combination of G_y and G_z gradients with inter-slice shifts yields voxel spreading across three dimensions.
Wave-CAIPI improves parallel imaging

- Voxel spreading increases the distance across aliasing locations
- This increases the variation in coil sensitivity profiles and improves parallel imaging capability

Aliasing voxels are spread out to increase the variation in coil sensitivity profiles.
$R=3\times3$ @ 3 Tesla, 1 mm iso, $T_{acq}=2.3\text{min}$

k-space

2D-CAIPI

Recon

$1/G$-factor

$G_{\text{max}}=1.82$

$G_{\text{mean}}=1.22$
R = 3x3 @ 3 Tesla, 1 mm iso, $T_{acq} = 2.3$ min

1. **k-space**
 - 2D-CAIPI
 - Bunch Encoding

2. **Recon**
 - 2D-CAIPI
 - $G_{max} = 1.82$
 - $G_{mean} = 1.22$
 - Bunch Encoding
 - $G_{max} = 1.93$
 - $G_{mean} = 1.38$

3. **1/G-factor**
 -

$k_{max} = 1.93$

$k_{mean} = 1.38$
R=3x3 @ 3 Tesla, 1 mm iso, $T_{\text{acq}}=2.3\text{min}$

k-space

- **2D-CAIPI**
 - $G_{\text{max}} = 1.82$
 - $G_{\text{mean}} = 1.22$

- **Bunch Encoding**
 - $G_{\text{max}} = 1.93$
 - $G_{\text{mean}} = 1.38$

- **Wave-CAIPI**
 - $G_{\text{max}} = 1.08$
 - $G_{\text{mean}} = 1.03$
R=3x3 @ 7 Tesla, 1 mm iso, $T_{acq} = 2.3$ min
R = 3x3 @ 7 Tesla, 1 mm iso, $T_{acq} = 2.3$ min

<table>
<thead>
<tr>
<th>k-space</th>
<th>Recon</th>
<th>$1/G$-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-CAIPI</td>
<td>$G_{max} = 1.74$</td>
<td>$G_{mean} = 1.19$</td>
</tr>
<tr>
<td>Bunch Encoding</td>
<td>$G_{max} = 2.12$</td>
<td>$G_{mean} = 1.30$</td>
</tr>
</tbody>
</table>
R=3x3 @ 7 Tesla, 1 mm iso, $T_{\text{acq}}=2.3\text{min}$
R=3x3 @ 7 Tesla, 1 mm iso, $T_{acq} = 2.3$ min

Wave-CAIPI

Tissue Phase

Susceptibility