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§Wave-CAIPI	modifies	3D	GRE	trajectory	to	follow	a	corkscrew	along	each	readout	line	[1]

§ For	accelerated	acquisitions,	this	spreads	the	aliasing	in	all	3D	dimensions	to	
substantially	improve	parallel	imaging

§ Acquisition	has	the	same	off-resonance	characteristic	as	Normal	GRE	(voxel	shift	in	
readout),	and	recon	is	fully	Cartesian

Kx

Kz

Ky

Wave-CAIPI	trajectory

R=2	acceleration	in	Ky
Aliasing	voxels	are	spread	out	to	increase	
the	variation	in	coil	sensitivity	profiles:

Improved	G-Factor

y

x

aliasing	voxels	are	further	aparttwo	voxels	collapse
Normal	GRE Wave-CAIPI

[1] B Bilgic, MRM’14

Wave-CAIPI	for	3D-GRE



§ Recently	introduced	CS-Wave	[1]	employed	Poisson	sampling	and	Wavelet	penalty	to	
combine	Compressed	Sensing	with	Wave	encoding	

§We	propose	optimized	CS-Wave	with	
v Efficient	ADMM	reconstruction

v Total	Variation	regularization

v Tailored	data-sampling

§When	combined,	these	double	the	improvement	achieved	by	the	previous	CS-Wave

§ Providing	20%	RMSE	reduction	over	Wave-CAIPI	at	15-fold	accl

Compressed	Sensing	Wave	
§

[1]	AT	Curtis	et	al,	ISMRM’15



Compressed	Sensing	Wave	

[1]	AT	Curtis	et	al,	ISMRM’15
[2]	H	Ye	et	al	ISMRM’16	p3246

§ Recently	introduced	CS-Wave	[1]	employed	Poisson	sampling	and	Wavelet	penalty	to	
combine	Compressed	Sensing	with	Wave	encoding	

§We	propose	optimized	CS-Wave	with	
v Efficient	ADMM	reconstruction

v Total	Variation	regularization

v Tailored	data-sampling

§ Combining	CS-Wave	with	Simultaneous	MultiSlice	(SMS)	Echo-Shift	strategy	[2]	further	
increases	the	acceleration	to	30-fold			(15×2)

§ Enabling	Quantitative	Susceptibility	Mapping	(QSM)	from	3	head	orientations	at	long	TE	
and	1.5	mm	iso	in	72	sec			(24	sec	/	orientation)



§ Despite	following	a	non-Cartesian	trajectory,	Wave	encoding	can	be	expressed	in	
Cartesian	space	through	point	spread	function	(psf):	

Wave	Recon:	Forward	Model

Wave	Image	(iDFT	without gridding)

m(x, y) wave(x, y)

Underlying	 Image
psf (x, y0 )

y

x

wave(x, y) = psf(x, y)⊗m(x, y)

§



Wave	Recon:	Forward	Model

Wave	Image	(iDFT	without gridding)

m(x, y) wave(x, y)

Underlying	 Image
psf (x, y0 )

y

x

wave(x, y) = Fx
H ⋅Psf(kx, y) ⋅Fx ⋅m(x, y)

No	need	for	gridding,	simple	DFT

§ Despite	following	a	non-Cartesian	trajectory,	Wave	encoding	can	be	expressed	in	
Cartesian	space	through	point	spread	function	(psf):	



§ Extend	to	3D	using	both	Gy and	Gz sinusoidal	gradient	waveforms:

Wave	Recon:	Forward	Model

wave(x, y, z) = Fx
H ⋅Psf(kx, y, z) ⋅Fx ⋅m(x, y, z)



§§ And	go	to	3D	k-space	by	applying	DFT	to	both	sides:	

Wave	Recon:	Forward	Model

Fxyz ⋅wave(x, y, z) = Fyz ⋅Psf(kx, y, z) ⋅Fx ⋅m(x, y, z)



Wave	Recon:	Forward	Model

k = Fyz ⋅Psf ⋅Fx ⋅m

§ And	go	to	3D	k-space	by	applying	DFT	to	both	sides:	



§ Include	coil	sensitivities	and	undersampling	mask	to	obtain	the	forward	SENSE	model

Wave	Recon:	Forward	Model

k =M ⋅Fyz ⋅Psf ⋅Fx ⋅S ⋅m

§



Wave	Recon:	Forward	Model

k =M ⋅E ⋅m

encoding   E = Fyz ⋅Psf ⋅Fx ⋅S

§ Include	coil	sensitivities	and	undersampling	mask	to	obtain	the	forward	SENSE	model



§§ Regularized	least	squares	to	incorporate	Compressed	Sensing:	

Efficient	CS-Wave	Recon

1/ 2 k −M ⋅E ⋅m
2

2  +  λ R ⋅m
1



§ For	efficient	optimization,	we	adopt	ADMM	[1,2]	and	introduce	auxiliary	variables	for	
data	consistency	and	regularization	terms:

§ This	allows	us	to	separate	the	difficult	3D	optimization	problem	into	smaller	

subproblems that	are	solved	in	closed	form	for	c and	r

1/ 2 k −M ⋅E ⋅m
2

2  +  λ R ⋅m
1

Efficient	CS-Wave	Recon

c = E ⋅m r = R ⋅m

[1] S Boyd et al, Found Trends Mach Learn’10
[2] T Goldstein et al, SIAM J Imaging Sci’09

§



§ For	efficient	optimization,	we	adopt	ADMM	[1,2]	and	introduce	auxiliary	variables	for	
data	consistency	and	regularization	terms:

§ And	the	image	update	is	found	by	a	simple	linear	combination	of	data	consistency	and	
regularization	

Efficient	CS-Wave	Recon

[1] S Boyd et al, Found Trends Mach Learn’10
[2] T Goldstein et al, SIAM J Imaging Sci’09

(α ⋅S2 +β ⋅R2) ⋅m =α ⋅EH (c− dc )+β ⋅R
H (r − dr )

1/ 2 k −M ⋅E ⋅m
2

2  +  λ R ⋅m
1

c = E ⋅m r = R ⋅m

dc  & dr : dual variables

§

α  & β: Lagrange parameters



Efficient	CS-Wave	Recon

[1] S Boyd et al, Found Trends Mach Learn’10
[2] T Goldstein et al, SIAM J Imaging Sci’09

(α ⋅S2 +β ⋅R2) ⋅m =α ⋅EH (c− dc )+β ⋅R
H (r − dr )

1/ 2 k −M ⋅E ⋅m
2

2  +  λ R ⋅m
1

c = E ⋅m r = R ⋅m

R2  = I   for Wavelet
S2  = SoS of sensitivities

§ For	efficient	optimization,	we	adopt	ADMM	[1,2]	and	introduce	auxiliary	variables	for	
data	consistency	and	regularization	terms:

§ And	the	image	update	is	found	by	a	simple	linear	combination	of	data	consistency	and	
regularization:	closed-form	for	Wavelet	



Efficient	CS-Wave	Recon

[1] S Boyd et al, Found Trends Mach Learn’10
[2] T Goldstein et al, SIAM J Imaging Sci’09

1/ 2 k −M ⋅E ⋅m
2

2  +  λ R ⋅m
1

c = E ⋅m r = R ⋅m

m = (α ⋅S2 +β ⋅ I)−1 ⋅ α ⋅EH (c− dc )+β ⋅R
H (r − dr )⎡⎣ ⎤⎦

§ For	efficient	optimization,	we	adopt	ADMM	[1,2]	and	introduce	auxiliary	variables	for	
data	consistency	and	regularization	terms:

§ And	the	image	update	is	found	by	a	simple	linear	combination	of	data	consistency	and	
regularization:	closed-form	for	Wavelet	



Efficient	CS-Wave	Recon

[1] S Boyd et al, Found Trends Mach Learn’10
[2] T Goldstein et al, SIAM J Imaging Sci’09

(α ⋅S2 +β ⋅R2) ⋅m =α ⋅EH (c− dc )+β ⋅R
H (r − dr )

1/ 2 k −M ⋅E ⋅m
2

2  +  λ R ⋅m
1

c = E ⋅m r = R ⋅m

diag(R2 ) = 6 ⋅ I   for TV since Laplacian
(α ⋅S2 + 6β ⋅ I)−1: diagonal preconditioner

§ For	efficient	optimization,	we	adopt	ADMM	[1,2]	and	introduce	auxiliary	variables	for	
data	consistency	and	regularization	terms:

§ And	the	image	update	is	found	by	a	simple	linear	combination	of	data	consistency	and	
regularization:	Preconditioned	Conjugate	Gradient	for	Total	Variation	



8.6%	RMSE

Proposed:	CS-Wave

Wave	encoding	with	R=15	accl	@	7T

§ Res =	1x1x2	mm3

§ FOV	 =	224x222x120	mm3	 tight
§ TE/TR	=	10.9/27	ms
§ ESPIRiT	[1]	sensitivities	from	16x16x16	points
§ Hybrid	sampling	[2]: Center	25%	w/	R=3x3	Caipi

Outer 75%	w/	VD	Poisson	
§ Tacq =	25	sec

hybrid	sampling

kz

ky

[1] M Uecker et al MRM’14
[2] K Sung et al MRM’13

Total	R=15-fold



8.6%	RMSE

Proposed:	CS-Wave

Wave	encoding	with	R=15	accl	@	7T

Wave-CAIPI

10.2%	RMSE

caipi	sampling

kz

ky

Recon	8.4	min

Recon	1.8	min

hybrid	sampling

kz

ky



Wave	encoding	with	R=15	accl	@	3T

7.4%	RMSE

Proposed:	CS-Wave

Wave-CAIPI

8.9%	RMSE

§ Tacq =	24	sec
§ TE/TR	=	13.3/26	ms



Phase	&	QSM	with	R=15	accl	@	7T

-0.038	ppm 0.043	ppm

-0.09	ppm 0.13	ppm

Proposed:	CS-Wave
Tissue	Phase
V-SHARP	[1,2]

[1] F Schweser et al NIMG’11
[2] B Wu et al MRM’11

Susceptibility	Map
Single-Step	TGV	[3]

[3] I Chatnuntawech et al ISMRM’16, p.869 
Thu 10:30 Sparse Road to Quantitative Imaging



-0.09	ppm 0.13	ppm

Phase	&	QSM	with	R=15	accl	@	7T

Wave-CAIPI
Tissue	Phase

-0.038	ppm 0.043	ppm

Susceptibility	Map
Single-Step	TGV	[3]

[3] I Chatnuntawech et al ISMRM’16, p.869 
Thu 10:30 Sparse Road to Quantitative Imaging



Phase	&	QSM	with	R=15	accl	@	3T

-0.038	ppm 0.043	ppm

-0.09	ppm 0.13	ppm

Tissue	Phase

Proposed:	CS-Wave

Susceptibility	Map
Single-Step	TGV	[3]

[3] I Chatnuntawech et al ISMRM’16, p.869 
Thu 10:30 Sparse Road to Quantitative Imaging



Phase	&	QSM	with	R=15	accl	@	3T

-0.038	ppm 0.043	ppm

-0.09	ppm 0.13	ppm

Tissue	Phase

Wave-CAIPI

Susceptibility	Map
Single-Step	TGV	[3]

[3] I Chatnuntawech et al ISMRM’16, p.869 
Thu 10:30 Sparse Road to Quantitative Imaging



Echo-Shift
§ For	SWI	and	QSM,	long	TE	is	desired	to	build	up	phase	and	T2*	contrast,	which	leads	to	
long	TR	and	acquisition	time

§ Echo-shift	exploits	the	unused	sequence	time	and	interleaves	multiple	echos	within	a	
single	TR	and	improves	efficiency	in	2D	[1]	or	3D	[2]	acquisitions

§ Echo-shift	has	also	been	used	for	fMRI	(PRESTO)	[3],	and	combined	with	(SMS)	[4]	for	
further	acceleration for	2D	imaging

§

[1] CTW Moonen et al MRM’92
[2] YJ Ma et al MRM’15
[3] G Liu et  al MRM’93
[4] R Boyacioğlu et al SMS Workshop’15



Slab	Select
Conventional
3D	encoding

Multi-Slab	Echo-Shift	for	3D	imaging

RF

Gslice

Gread

Gphase

Slab	1

TR

§ Conventional	3D-GRE:	substantial	unused	time	due	to	late	TR

long	TE

acquisition



RF

Slab	1 Slab	2

Multi-Slab	
Echo-Shift

Gslice

Gread

TR
Gphase

Multi-Slab	Echo-Shift	for	3D	imaging
§Multi-Slab	Echo-Shift:	add	a	second	readout	and	crusher	gradients	for	faster	encoding			

Slab	1 Slab	2

v Slab	boundary	artifact
v Acceleration	in	head-foot	more	difficult	since	distance	between	aliasing	voxels	reduced	

by	half

acquisition



RF

Odd	Slc Even	Slc

SMS
Echo-Shift

Gslice

Gread

TR
Gphase

SMS	Echo-Shift	for	3D	imaging
§ SMS	Echo-Shift	[1]:	excite	and	encode	comb	slice	groups

Odd	Slc Even	Slc

[1]	H	Ye	et	al	ISMRM’16	p3246

MultiBand	RF

acquisition



Echo-Shift	CS-Wave	with	R=15×2	accl	@	3T

§ 1.5	mm	iso
§ Long	TE	=	35	ms (TR	=	47	ms)
§ Tacq =	24	sec

Left Neutral Right



Echo-Shift	CS-Wave	with	R=15×2	accl	@	3T

QSM	from	3	orientations:	Ttotal =	72sec
Left Neutral Right

§ Combine	information	from	3	head	orientations	to	solve	QSM	inverse	problem	[1]

[1] T Liu et al MRM’09

-0.09	ppm 0.11	ppm



Echo-Shift	CS-Wave	with	R=15×2	accl	@	3T

QSM	from	3	orientations:	Ttotal =	72sec

-0.09	ppm 0.11	ppm

Left Neutral Right

Tissue	Phase

-0.035	ppm 0.035	ppm



Conclusion
§We	proposed	optimized	CS-Wave	with	efficient	reconstruction	and	tailored	data-
sampling

§ SMS	Echo-Shift	strategy	utilizes	the	unused	sequence	time	for	extra	encoding

§ Combining	CS-Wave	with	SMS	Echo-Shift	permits	30-fold	(15×2)	acceleration

§ This	enables	rapid	SWI	and	QSM	acquisition	at	long	TE	required	for	optimal	contrast

§ Questions	/	Comments:
berkin@nmr.mgh.harvard.edu

§ Support:	NIH	R24MH106096,	R01EB020613,	R01EB017337,	U01HD087211


