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In vivo MRI-derived measurements of human cerebral cortex thickness

are providing novel insights into normal and abnormal neuroanatomy,

but little is known about their reliability. We investigated how the

reliability of cortical thickness measurements is affected by MRI

instrument-related factors, including scanner field strength, manufac-

turer, upgrade and pulse sequence. Several data processing factors

were also studied. Two test–retest data sets were analyzed: 1) 15

healthy older subjects scanned four times at 2-week intervals on three

scanners; 2) 5 subjects scanned before and after a major scanner

upgrade. Within-scanner variability of global cortical thickness

measurements was <0.03 mm, and the point-wise standard deviation

of measurement error was approximately 0.12 mm. Variability was

0.15 mm and 0.17 mm in average, respectively, for cross-scanner

(Siemens/GE) and cross-field strength (1.5 T/3 T) comparisons.

Scanner upgrade did not increase variability nor introduce bias.

Measurements across field strength, however, were slightly biased

(thicker at 3 T). The number of (single vs. multiple averaged)

acquisitions had a negligible effect on reliability, but the use of a
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different pulse sequence had a larger impact, as did different

parameters employed in data processing. Sample size estimates indicate

that regional cortical thickness difference of 0.2 mm between two

different groups could be identified with as few as 7 subjects per group,

and a difference of 0.1 mm could be detected with 26 subjects per

group. These results demonstrate that MRI-derived cortical thickness

measures are highly reliable when MRI instrument and data process-

ing factors are controlled but that it is important to consider these

factors in the design of multi-site or longitudinal studies, such as

clinical drug trials.

D 2006 Elsevier Inc. All rights reserved.

Keywords: Cortical thickness; Structural MRI; Cerebral cortex; Morphology
Introduction

Techniques that enable the in vivo MRI-derived quantitative

measurement of properties of the human cerebral cortex, such as

thickness, are beginning to demonstrate important potential

applications in basic and clinical neuroscience. Changes in the

gray matter that makes up the cortical sheet are manifested in

normal aging (Jack et al., 1997; Salat et al., 1999, 2004; Sowell et

al., 2003, 2004), Alzheimer’s disease (Dickerson et al., 2001;

http://dx.doi.org/10.1016/j.neuroimage.2006.02.051
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Thompson et al., 2003; Lerch et al., 2005), Huntington’s disease

(Rosas et al., 2002), corticobasal degeneration (Boeve et al., 1999),

amyotrophic lateral sclerosis (Kiernan and Hudson, 1994), multiple

sclerosis (Sailer et al., in press) and schizophrenia (Thompson et

al., 2001; Kuperberg et al., 2003; Narr et al., 2005). Progressive

thinning of the cortex follows a disease-specific regional pattern in

certain diseases, such as Alzheimer’s disease (Thompson et al.,

2003); thus, in vivo cortical thickness measures could be useful as

a biomarker of the evolution of the disease. Longitudinal imaging-

based biomarkers of disease progression will likely be of great

utility in evaluating the efficacy of disease-modifying therapies

(Dickerson and Sperling, 2005).

Measurement of cortical thickness from MRI data is a non-

trivial task. Manual thickness measurements are difficult to obtain

due to the highly convoluted nature of the cortex. It can take a

trained anatomist several days to manually label a high-resolution

set of MR brain images, and even this labor-intensive procedure

allows only the measurement of cortical volume, not cortical

thickness, because the cortical thickness is a property that can only

be properly measured if the location and orientation of both the

gray/white and pial surfaces are known. To facilitate automatic

thickness measurement, many computerized methods have been

proposed in the literature for segmenting the cortex and finding the

cortical surfaces from MRI data (Dale et al., 1999; Joshi et al.,

1999; MacDonald et al., 1999; Xu et al., 1999; Zeng et al., 1999;

Van Essen et al., 2001; Shattuck and Leahy, 2002; Sowell et al.,

2003; Barta et al., 2005; Han et al., 2005a).

Although the validation of MRI-derived cortical thickness

measurements has been performed against regional manual

measurements derived from both in vivo and post-mortem brain

scans (Rosas et al., 2002; Kuperberg et al., 2003; Salat et al.,

2004), the reliability of measures of this fundamental morphomet-

ric property of the brain has received relatively little systematic

investigation (Fischl and Dale, 2000; Rosas et al., 2002; Kuperberg

et al., 2003; Sowell et al., 2004; Lerch and Evans, 2005). Most of

these studies approach reliability by comparing thickness measure-

ments across different subjects or by performing repeated scans on

a few subjects acquired within the same scan session or within very

short scan intervals (for example, the subjects were removed from

the scanner and then scanned again in 5 min (Sowell et al., 2004)).

This approach may greatly underestimate the sources of variability

within and between studies.

Variability in MRI-derived morphometric measures may result

from subject-related factors, such as hydration status (Walters et

al., 2001), instrument-related factors, such as field strength,

scanner manufacturer or pulse sequence, or data-processing-related

factors, including not only software package but also the

parameters chosen for analysis. All of these factors may contribute

to differences between typical cross-sectional studies (e.g., when

interpreting differences between two studies of patients with

Alzheimer’s disease vs. controls scanned at a single time point

on one scanner). Longitudinal studies of normal development,

aging or disease progression face additional challenges associated

with both subject-related factors as well as instrument-related

factors (e.g., major scanner upgrades). For multi-site studies, it is

critical to understand and adjust for instrument-related differences

between sites, such as scanner manufacturer, field strength and

other hardware components. Finally, longitudinal multi-center

studies, such as the Alzheimer’s Disease Neuroimaging Initiative,

must contend with all of these factors while attempting to detect

subtle effects. Thus, detailed quantitative data regarding the degree
to which each of the factors outlined above contribute to variability

in cortical thickness (and other measures) could be very helpful for

both study design and interpretation. Unfortunately, little work in

this area has been performed.

Specifically, it is not yet clear how cortical thickness measures

vary as a function of MRI instrument-related factors, such as

field strength, scanner manufacturer and scanner software and

hardware upgrades. Knowledge of the degree to which different

MRI instrument-related factors affect the reliability of cortical

thickness measures is essential for the interpretation of these

measures in basic and clinical neuroscientific studies. Further-

more, this knowledge is critical if cortical thickness measures are

to find applications as biomarkers in clinical trials of putative

treatments for neurodegenerative or other neuropsychiatric

diseases.

We undertook this study to evaluate the reliability of a cortical

thickness measurement method both within and across different

scanner platforms and field strengths, with the goal of quantita-

tively identifying the factors that are the greatest contributors to

cortical thickness variability. Two groups of test–retest data sets

were acquired and analyzed. In the first data set, 15 healthy older

subjects were scanned four times at 2-week intervals on three

different scanner platforms (test scan on Siemens Sonata 1.5 T, re-

test scan on Siemens Sonata 1.5 T, cross-site scan on GE Signa 1.5

T, cross-field-strength scan on Siemens Trio 3 T). Older

participants were studied so that anatomical variability related to

atrophy and age-related signal changes was represented. The 2-

week interval was chosen so that elements of variability related to

subject hydration status and minor instrument drift would be

included, which may be artificially minimized when the test– retest

interval is several min to ¨1 day. First, the test– retest reliability of

cortical thickness measurements was investigated from the two

Siemens Sonata sessions. Next, analyses were performed on the

effects of various instrument-related factors, including: a) different

MR manufacturer (Siemens vs. GE); b) different field strength (1.5

T vs. 3 T); c) different pulse sequences (MPRAGE versus multiple

flip angle, multi-echo FLASH); d) different number of data

acquisitions (one MPRAGE vs. two averaged MPRAGE acquis-

itions). Finally, effects of several data processing-related factors

were analyzed, including: a) different levels of spatial smoothing of

the raw thickness maps; and b) different processing schemes

(cross-sectional versus longitudinal).

The second data set consisted of 5 healthy younger subjects

scanned repeatedly before and after a major scanner upgrade, with

the goal of evaluating the reliability of thickness measurements in

longitudinal studies that contend with scanner upgrades.

In this study, thickness measurements were performed using

the FreeSurfer software package, which is an automated method

for cortical surface reconstruction and thickness computation.

Although comparison with other thickness measurement methods

is beyond the scope of this paper, the effects of several aspects of

the processing system within FreeSurfer were studied as noted

above.
Materials and methods

Data acquisition

Two groups of test– retest data sets were acquired and analyzed

to characterize the reliability of cortical thickness estimation.
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The first group of test–retest data consists of MRI scans

acquired from 15 healthy older subjects (age between 66 and 81

years; mean: 69.5 years; SD: 4.8 years. 8 males, 7 females). All

participants provided informed consent in accordance with the

Human Research Committee of Massachusetts General Hospital.

Each subject underwent 4 scan sessions at 2-week intervals (two of

the subjects were each missing one scan session), including two

sessions on a Siemens 1.5 T Sonata scanner (Siemens Medical

Solutions, Erlangen, Germany), one on a Siemens 3 T Trio scanner

and one on a GE 1.5 T Signa scanner (General Electric,

Milwaukee, WI).

For each Siemens scan session, the acquisition included two

MPRAGE volumes (190 Hz/pixel, flip angle = 7-, 1.5 T: TR/TE/

TI = 2.73 s/3.44 ms/1 s, 3 T: TR/TE/TI = 2.53 s/3.25 ms/1.1 s) and

two multi-echo multi flip angle (30- and 5-) fast low-angle shot

(FLASH) volumes (651 Hz/pixel, TR = 20 ms, TE = (1.8 + 1.82 *

n) ms, n = 0, . . ., 7; both for 1.5 T and 3 T). In each GE session,

only the two MPRAGE volumes were acquired, but no multi-echo

FLASH (MEF). Acquisition time for MPRAGE and MEF

sequences was roughly the same and about 8 min each. All scans

were 3D sagittal acquisitions with 128 contiguous slices (imaging

matrix = 256 � 192, in-plane resolution = 1 mm, slice thickness =

1.33 mm). In each Siemens scan session, the acquisitions were

automatically aligned to a standardized anatomical atlas to ensure

consistent slice prescription across scans (Van der Kouwe et al.,

2005; Benner et al., in press).

In the second group of test– retest data, 5 healthy volunteers (34 T
3 years of age; 1 male, 4 females) were each scanned four times,

twice before and twice after anMRI scanner upgrade (within 1 week

for the repeated scans on the same scanner and the total time span

was about 6 weeks). The upgrade was from a Siemens Magnetom

Sonata to a Magnetom Avanto, which included the following major

changes: a) main magnet (both are 1.5 T, Avanto’s length is 150 cm,

Sonata’s is 160 cm), (b) gradient system (Avanto coils are more

linear, Sonata 40 mT/m at 200 T/m/s, Avanto 45 mT/m at 200 T/m/

s), c) head RF coil (circularly polarized on Sonata, 12 channels in

Avanto) and d) software upgrade. During each of the four scan

sessions, two MPRAGE volumes were acquired for each subject

with the same sequence parameter settings as theMPRAGE scans in

the first group. This second group of data is used to evaluate the

thickness measurement reliability with respect to changes in scanner

platform and also the measurement reliability before and after the

scanner upgrade.

Cortical surface reconstruction and cortical thickness

measurement

Reconstruction of the cortical surfaces was performed using the

FreeSurfer toolkit (which is freely available to the research com-

munity through the website http://www.surfer.nmr.mgh.harvard.

edu/). This suite of methods was initially proposed in 1999 (Dale et

al., 1999; Fischl et al., 1999a) and has undergone several important

improvements over the years (Fischl et al., 1999b, 2001, 2002;

Segonne et al., 2004).With these updates, the current method is fully

automated. All the surface reconstruction results reported in this

paper were generated using the fully automated processing pipeline,

and no manual intervention was involved.

In FreeSurfer, when multiple acquisitions of the same pulse

sequence are available for the same subject in each scan session,

they are usually simply averaged after motion correction to

generate a single volume with better signal-to-noise ratio (SNR)
(the effect of number of acquisitions on thickness measurement

reliability is also investigated in this study). The multiple volumes

from the MEF sequence, however, have very different contrast

properties due to the different flip angle settings. Thus, a weighted

average is adopted instead. The weighting coefficients (a unit

vector of length 16) were pre-computed using a set of 11 MEF

scans that have complete manual labeling for gray matter (GM) and

white matter (GM). An optimal weighting was first computed for

each data set based on the principle of linear discriminant analysis

(Duda et al., 2001), with the objective to maximize the contrast-to-

noise-ratio (CNR) between GM and WM. The weighting vectors

from the 11 training data sets were then averaged to get the final

weighting coefficients that are used for the processing of new MEF

data.

Cortical thickness estimates in this study are computed as

follows. For each point on the gray/white surface, the shortest

distance to the pial surface is first computed. Next, for each point

on the pial surface, the shortest distance to the gray/white surface is

found, and the cortical thickness at that location is set to the

average of these two values. Other thickness computation methods

have been reported (Jones et al., 2000; Yezzi and Prince, 2003), but

comparing their effects on the thickness reliability is outside the

scope of this paper. We refer interested readers to Lerch and Evans

(2005) for one such comparison.

Evaluation of thickness measurement reliability

Reliability (or reproducibility) of cortical thickness measure-

ments was evaluated by comparing within subject thickness values

between scan sessions. For example, using the within subject

repeated MPRAGE scans from the first group of subjects, the

measurement reliability can be evaluated either within the same

scanner platform (using the two Sonata scans), or across different

scanner platform (one Sonata and one Signa scan), or across dif-

ferent field strength (one Sonata and one Trio scan), or across both

scanner platform and field strength (one Signa and one Trio scan).

In this study, both global and local thickness measurement

reliability is evaluated, with the focus being on the latter. The

global evaluation is performed by computing the global mean

thickness value across the whole cortex for each subject and

evaluating its reliability across difference scan sessions. To

evaluate the error in local thickness measurements, surface point

correspondence must be built to find thickness measurements at

homologous cortical locations. The gray/white surface is used as

reference to establish surface point correspondence since the gray/

white surfaces are in general insensitive to atrophy, which could

otherwise confound the alignment procedure.

Although each gray/white surface was mapped to the same

surface atlas and their spherical coordinates can be used to find

point correspondence between one surface and another, variations

in the nonlinear surface registration or morphing often give rise to

extra noise in the computed thickness difference or error map.

Instead, a simpler linear registration is adopted to perform the intra-

subject surface alignment, and surface point correspondence is then

built according to their Euclidean distance in the registered space

(typically, the maximal distance is less than 5 mm, and the mean

and standard deviation of the absolute Euclidean distances are both

less than 0.3 mm). The linear registration is computed using the

FLIRT linear registration tool (Jenkinson et al., 2002). The

volumetric registration matrix is then applied to the corresponding

surfaces. It is found that, for registering surfaces across different

 http:\\www.surfer.nmr.mgh.harvard.edu\ 
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scan sessions of the same subject, the linear registration is

sufficient and more robust than a nonlinear registration, which

has an unnecessarily large number of degrees of freedom for this

case. The nonlinear surface morphing is still necessary, however, in

order to align thickness or thickness difference maps across

different subjects for the computation of group-wise statistics. It

should be noted that perfect surface node correspondence cannot

be guaranteed and the computed thickness variability may include

contributions from the surface registration error. Surface registra-

tion error, however, is unlikely to contribute significantly to the

thickness variability measure, and its effect is further reduced if the

raw thickness map is smoothed.

After the thickness difference maps have been computed for

each subject and surface correspondence built across the group of

subjects using the nonlinear surface morphing, the mean and

standard deviation of the thickness differences can be computed at

each location of the surface atlas over the group of subjects to

evaluate the local thickness measurement variability. The relation-

ship between the statistics of the thickness differences and the

measurement variability (standard deviation of the measurement

error) is worth some explanation. Assume that the measurement

error can be modeled by a normal distribution N(0,re
2) with zero

mean (that is, unbiased) and standard deviation re. Note that the

standard deviation re is a direct characterization of measurement

variability that is often used in hypothesis testing and statistical

power analysis. Given two measurements X and Y of the same

thickness value l (e.g., from two repeated scans of the same

subject), under the above assumption, X and Y both follow a

normal distribution of N(l,re
2). From probability theory, their

difference Z(= X � Y) follows a normal distribution of N(0,2re
2).

Clearly, given multiple observation of the difference Z at each

homologous cortical location (each subject provides one such

observation), its standard deviation rZ can be estimated, which in

turn gives an estimate of the standard deviation of the measurement

error according to the relationship re ¼ rZ=
ffiffiffi
2
p

.

Another simpler statistic, used in this study, is the mean value

of the absolute differences, E(|Z|), computed at each surface atlas

location. Through simple derivation, it can be obtained that

E jZjð Þ ¼ 2re=
ffiffiffi
p
p
¼ 1:128re. We chose E(|Z|) because it is more

intuitive and can be interpreted as the mean measurement error and

also because the estimation of means is more robust than the

estimation of variance when sample sizes are small. We drop the

factor of 1.128 when reporting the results, but keep in mind that it

gives a slight overestimation of the measurement variability. In the

Results section, maps of E(|Z|) will be presented to show the

spatial pattern of measurement error. Note that, if the measurement

noise is biased (i.e., having a non-zero mean (), E(|Z|) is still a

good approximation of re as long as ( N re, but the overestimate is

further increased.

Effect of smoothing on thickness measurement reliability

Note that, in the application of cortical thickness measurements

for neuroscience studies, it is often necessary to perform spatial

smoothing of the raw thickness maps (Fischl and Dale, 2000;

Rosas et al., 2002; Kuperberg et al., 2003; Chung et al., 2005;

Lerch and Evans, 2005; Narr et al., 2005). The smoothing reduces

noise in the thickness measurements and increases the sensitivity

and validity of statistical analysis (Chung et al., 2005; Lerch and

Evans, 2005). The tradeoff is the reduction in the spatial resolution

of the smoothed thickness maps. In this study, the effect of
different levels of spatial smoothing on the thickness reliability is

also evaluated. The results can be used as a guide for users to

choose the optimal smoothing when applying the thickness

measurement method in practice.

Similar to a previous approach (Fischl and Dale, 2000),

smoothing of the raw thickness maps is performed intrinsically

on the surface tessellation using an iterative nearest-neighbor

averaging procedure. At each iteration, the thickness value at a

surface vertex is replaced by the average of the values at its

immediate neighbors and at its own location. This procedure

simulates the solution of a linear diffusion equation on the surface

mesh and as such approximates a Gaussian smoothing kernel on

the surface mesh. The total amount of smoothing is determined by

the total number of iterations. A conservative approximation for

the equivalent Gaussian kernel size is r V
ffiffiffiffiffiffiffiffiffi
NDx
p

, where N is the

number of iterations and Dx is the average vertex spacing. In the

surface reconstruction results, a typical surface mesh contains

about 120K vertices and the vertex spacing is less than 1 mm.

From empirical simulation, it was found that N iterations of local

averaging can be well approximated by a surface-based Gaussian

filter of kernel size r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2N=p

p
. This relationship is used

throughout the presentation of the experimental results.

Effect of number of acquisitions on thickness measurement

reliability

The MPRAGE scans from the first group of 15 subjects are

used to study the effect of different number of image acquisitions

on the thickness measurement reliability. For this purpose, cortical

surface reconstruction and thickness measurement are also

computed using only a single MPRAGE volume from each scan

session. The thickness measurement reliability is then compared to

the results when using the average of two MPRAGE volumes

(which is the default approach).

Effect of different processing schemes on thickness measurement

reliability

The surface reconstruction and thickness estimation procedure

described above was designed for the processing of individual

scans, and it is thus not optimal for the processing of longitudinal

data (scans obtained at multiple time points from each subject). We

also designed a longitudinal processing scheme that aims to

incorporate the subject-wise correlation of longitudinal data into

the processing stream in order to further reduce the measurement

noise. Its performance in thickness measurement reliability is also

evaluated and compared to the original cross-sectional method.

The longitudinal scheme differs from the original procedure in

three major steps: preprocessing, intensity normalization and

surface deformation. Assuming that a series of scans of the same

subject are obtained at different time points, the data from time

point one is first processed using the original procedure. For the

processing of later time points, the three major steps mentioned

above are modified. First, a linear registration is computed between

the image volume of a later time point and that of the first time

point. Note that the volume itself is not transformed, but only the

registration matrix is stored and will be used in later steps. Second,

at the intensity normalization step, instead of re-computing the

WM control points, the control points (automatically computed)

from time point one are mapped to the current volume using the

previously computed linear registration, which are then used to



Table 1

Global thickness statistics (mean T SD) for each individual subject as

measured using data from each scan session (in mm)

Subjects Siemens 1.5 T Siemens 1.5 T GE 1.5 T Siemens 3 T

1 2.06 T 0.79 2.06 T 0.78 2.05 T 0.78 2.17 T 0.81

2 2.12 T 0.74 2.09 T 0.75 2.13 T 0.76 2.26 T 0.78

3 2.03 T 0.71 2.07 T 0.71 2.07 T 0.73 2.17 T 0.73

4 2.00 T 0.71 1.98 T 0.71 1.98 T 0.72 2.07 T 0.75

5 1.93 T 0.66 1.95 T 0.68 1.94 T 0.70 2.06 T 0.71

6 1.79 T 0.68 1.81 T 0.68 1.83 T 0.68 1.90 T 0.69

7 2.15 T 0.75 2.11 T 0.74 2.12 T 0.74 2.19 T 0.76

8 1.98 T 0.72 1.95 T 0.73 1.98 T 0.75 2.08 T 0.77

9 2.02 T 0.74 2.05 T 0.76 2.08 T 0.76 2.18 T 0.79

10 1.91 T 0.71 1.95 T 0.68 1.94 T 0.74 2.01 T 0.75

11 1.96 T 0.70 1.99 T 0.71 1.96 T 0.71 �
12 1.97 T 0.70 1.99 T 0.70 � 2.10 T 0.72

13 2.08 T 0.78 2.05 T 0.78 2.12 T 0.77 2.21 T 0.79

14 1.93 T 0.71 1.87 T 0.70 1.96 T 0.72 1.98 T 0.73

15 1.82 T 0.67 1.83 T 0.67 1.79 T 0.68 1.91 T 0.70

‘‘�’’ indicates two data sets not acquired.
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estimate the bias field. Third, at the surface deformation step,

instead of starting the deformation from the topology-corrected

WM tessellation, the gray/white and pial surfaces reconstructed

from time point one are first transformed using the linear

registration and then used to initialize the deformation for the

gray/white and pial surfaces respectively for the current time point.

Such an initialization scheme reduces the problem of deformable

model methods being sensitive to initialization and local optimality

(Dale et al., 1999; Xu et al., 1999; Han et al., 2005a). It also

eliminates variation in initial surface tessellation and topology

correction since these two steps are no longer needed in the

processing of later time points. The performance of this method is

evaluated in this study by considering the repeated scans from the

different scan sessions as a longitudinal time series. It is noted that

scripts for performing the longitudinal analysis are not included in

the current distribution of FreeSurfer, but they will be made

available to the public very soon.

Effect of different imaging sequences on thickness measurement

reliability

In this comparison, cortical thickness measurements are compu-

ted using the MEF scans for the first group of 15 subjects, and the

measurement reliability is compared with that of the MPRAGE

scans. As explained earlier, the two MEF acquisitions from each

scan session have different image contrast due to the different flip

angle used, and thus a weighted average is applied to combine

them into one single volume, which is then used as input for the

cortical surface reconstruction and cortical thickness measurement.

Since the MEF scans were not acquired on the GE scanner, the

reliability of thickness from the MEF sequence data is only

evaluated for the Siemens platform, both within and across field

strengths.

Reliability of thickness measurement with respect to scanner

upgrade

The second group of test– retest data is used to study the effect

of scanner upgrade on thickness measurement reliability. For this

purpose, thickness maps are first generated using data from each

individual scan session of the 5 subjects (using the original cross-

sectional scheme). Thickness difference maps are then computed

between each pair of scans of the same subject. In particular, the

pair of repeated scans before the scanner upgrade are used to

estimate the measurement reliability on the old scanner platform

and the other two for estimating the measurement reliability after

the scanner upgrade. A third pair is formed by choosing one scan

before the scanner upgrade and one afterward in order to evaluate

the thickness reliability with respect to the upgrade. The thickness

difference maps are all mapped to the common surface template,

and their statistics (mean of the absolute thickness differences) are

then computed over the group of subjects in order to estimate the

measurement variability.

Power analysis

Given an estimation of the measurement error standard

deviation, power calculations can be conducted to help answer

questions such as how many subjects or samples are needed in

order to detect a thickness change of a certain number of

millimeters. This type of sample size determination is an important
step in planning a statistical study or clinical trial. The sample size

is in general determined by the chosen significance level (the

probability of type I error), desired statistical power (one minus the

probability of type II error), the effect size and the standard

deviation of measurement error (Cohen, 1988). There are no

closed-form formulae for sample size determination, and the

computation is usually done iteratively or using a look-up table.

In the Results section, sample size estimates results are presented

based on the estimated thickness measurement variability. The first

calculation was performed to estimate the sample size of detecting

between-group differences between a group of patients with

Alzheimer’s disease (AD) and a group of controls. One estimate

of the effect size for this type of study is 10%, based on data

comparing mean cortical thickness between AD patients and

controls (Thompson et al., 2003). Variability measures were derived

from the cross-sectional cortical thickness analysis approach

described above. A sample size estimate for a hypothetical clinical

trial of a putative disease-modifying therapy for Alzheimer’s disease

was also performed. For this calculation, data from Thompson et al.

(2003) were used to estimate the annual rate of cortical thinning in

AD at 5% and in normal aging at 1%. In addition, a 50% treatment

effect for a 1-year clinical drug trial was assumed, as was done by

Jack et al. (2003). Thus, the effect size used in this calculation was

50% of the difference in the atrophy rates between the groups or

0.5 � 4%/year = 2%/year. For this calculation, variability measures

were derived from the longitudinal cortical thickness analysis

approach described above. For all sample size estimates, a

significance level of 0.05 (one-sided) and a statistical power of

0.9 were assumed. The computation was performed using the

standard formula as implemented in an online Java software

algorithm developed by David A. Schoenfeld at our institute

(http://www.hedwig.mgh.harvard.edu/sample_size/size.html).
Results and discussion

Reliability of global cortical thickness measure

Global thickness measures for each subject are presented in

Table 1, where the mean and standard deviation were computed

 http:\\www.hedwig.mgh.harvard.edu\sample_size\size.html 
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over the whole cortical surface combining left and right hemi-

spheres. Overall, the range of cortical thickness values is similar

for each individual subject across different scan sessions. The

reproducibility of global mean cortical thickness is further

demonstrated in Fig. 1 for the four test–retest comparisons. As

can be seen, the global mean thickness is an exceedingly reliable

measure and highly reproducible across scan sessions. On average,

the absolute difference in global mean cortical thickness is less

than 0.03 mm within the same scanner platform. The mean

absolute difference stays roughly the same even when comparing

across different scanner platforms (i.e., Siemens Sonata vs. GE

Signa). The variability is increased when comparing across field

strengths but is still within 0.12 mm or about 1/8th of the voxel size

on average. It is noted that the global mean thickness value is not

affected by the degree of linear smoothing applied to the raw

thickness maps, and thus the reproducibility of global mean

thickness is independent of the level of smoothing.

The results in Fig. 1 also show that field strength has a larger

effect on the reproducibility of mean cortical thickness than

scanner platform, which is observed in all other thickness

comparisons that were studied as well. As shown in the last

column of Table 1, mean thickness values are slightly higher at 3 T

than at 1.5 T. This effect is largely due to the fact that the

underlying tissue NMR parameters and, in particular, the longitu-

dinal relaxation time T1, change with field strength, which leads to

changes in the intensity and contrast of the images. As a result,

thickness measurements are biased across different field strengths,

which contributes to the larger difference in global mean thickness

when comparisons of 1.5 T and 3 T data are made. Note that this

effect could be reduced by explicitly deriving sequences that

minimize the contrast differences across field strength. Further

study is required to determine which field strength gives thickness

measurements that are more consistent with histological results.

Reliability of local cortical thickness measurement

To assess the local variability of cortical thickness measure-

ment, the group-wise mean (in absolute value) of the thickness

differences was computed at every location of the surface atlas, as

described in the Materials and methods section. The thickness

estimates were computed using the average of two MPRAGE
Fig. 1. Reproducibility of global mean cortical thickness across sites. The

bar plots show the average absolute difference in global mean cortical

thickness between pairs of repeated scans, and the error bars indicate one

standard deviation. The names indicate scanner platform: Sonata, Siemens

1.5 T; Trio, Siemens 3 T; and Signa, GE 1.5 T.
volumes. Fig. 2 shows the maps for the local measurement

variability, i.e., maps of the mean absolute thickness difference

(E |Z| in the Materials and methods section) for the four test– retest

comparisons, where a small surface-based blurring kernel (kernel

size r = 6 mm) was used to smooth the raw thickness maps before

the differences were computed (the effect of different smoothing

level will be presented in the next section). Only the left

hemisphere is shown; the right hemisphere is similar. Note that

non-cortical regions were excluded in the computation using a

mask that was initially drawn on the surface atlas and then mapped

to each subject’s surface, as indicated by the gray areas. The mask

was drawn based on the surface curvature map and the surface

parcellation scheme of Fischl et al. (2004b). It is intended to

exclude non-cortical areas of the surface including the medial wall

and the corpus callosum.

As shown in Fig. 2, the measurement variability (the average

absolute thickness difference) is less than 0.12 mm for the bulk of

the cortex when comparing thickness measurements within the

same scanner platform. The average absolute difference value is

slightly increased when comparing across platform or field strength

but is still less than 0.15 mm for the majority of the cortex when

platform but not field strength differs and less than 0.2 mm when

field strength differs. The thickness measurement variability can be

further reduced if a larger smoothing kernel is applied, as will be

demonstrated in the next experiment. Note that the smoothing

kernel size used here (6 mm) is very conservative when compared

to what has been suggested in the literature as an optimal

smoothing kernel, such as for example 30 mm (Chung et al.,

2005; Lerch and Evans, 2005).

It is also clear from the maps in Fig. 2 that the thickness

measurement variability is non-uniform across the cortex. The

most variable area that is consistent across all the comparisons is a

region around the precentral gyrus, which we believe reflects the

local cytoarchitecture of this region of primary motor cortex. In

particular, the special cytoarchitecture in this region leads to

reduced gray/white contrast in T1-weighted images (Steen et al.,

2000). Other areas with low gray/white contrast due to high degree

of myelination, such as primary visual areas (Braitenberg and

Schuz, 1991), also show larger measurement variability. To

improve the reliability and accuracy of cortical estimations over

the entire brain, it may thus be necessary to design new pulse

sequences to achieve sufficient contrast in these regions.

There are some other regions that show higher levels of

variability due to difficulties in the surface reconstruction. For

example, the presence of dura tangential to the cortex and the close

proximity of the two hemispheres often cause errors in localizing

the pial surface in the medial frontal and anterior temporal regions

and lead to larger thickness measurement variability. The narrow

separation between putamen or hippocampus and the adjacent

cortical gray matter also causes a problem in finding the gray/white

surface around the insular and entorhinal cortex regions and also

increases the thickness variability.

Effect of smoothing on thickness measurement reliability

Smoothing of raw thickness maps can reduce noise in the

thickness measurements and thus improve reliability. To quantify

the effect of smoothing on thickness reproducibility, different

levels of smoothing were applied to the raw thickness map before

computing the thickness differences and their statistics. Instead of

showing all the measurement error maps as in Fig. 2, the results



Fig. 2. Maps of thickness measurement variability for four test – retest comparisons (the left hemisphere only; the right hemisphere is similar). Subcortical

regions and corpus callosum area are masked out since thickness is not defined there. The measurement variability is less than 0.12 mm for most the cortex for

the within-scanner test – retest comparison and less than 0.2 mm for across platform comparisons. Left column: lateral view; right column: medial view.
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were summarized by computing the overall mean of the thickness

measurement error over each hemisphere of the surface atlas

(masked areas being excluded), and these statistics were plotted as

a function of the size of the smoothing kernel. The results are

shown in Fig. 3.

These figures illustrate the observation that the thickness

measurement variability becomes smaller as smoothing level

increases (mean difference and standard deviation both become

smaller). The rate of reduction of variability is high initially with
Fig. 3. Effects of smoothing on thickness measurement reproducibility. The plots

function of smoothing kernel size. Left column: left hemisphere; right column, ri
increasing blurring kernel size but slows with further increment of

smoothing, which indicates that the autocorrelation of the

measurement noise falls off rapidly with distance on the surface.

Thus, it is sufficient to use a small kernel size to improve the

reliability of the thickness comparisons without sacrificing much of

the spatial resolution. As shown in Fig. 3, with a small smoothing

kernel of 6 mm (much smaller than typically applied in the

literature), the average error in thickness measurements with the

same scanner is reduced to about 0.12 mm and is about 0.15 mm
show the overall mean of the absolute thickness difference map plotted as a

ght hemisphere.



Fig. 4. Maps of thickness measurement variability for four test – retest comparisons using single MPRAGE acquisition. Left column: lateral view; right column:

medial view. Only the left hemisphere is shown here; the right hemisphere is similar. A smoothing kernel of size r = 6 mm was applied when generating the

thickness difference maps.
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for cross platform and 0.17 mm for cross-field strength compar-

isons. With further increased smoothing (e.g., a size of 30 mm), the

average within-scanner measurement error is only about 0.05 mm

or 1/20th of the voxel size. Note that, when the kernel size is

increased to infinity, the thickness at every surface location will be

equal to the global mean and the differences reduce to the

difference in the global means discussed in Fig. 1.
Fig. 5. Comparison of method reliability with one or two MPRAGE acquisitions.

indicate one standard deviation. Left: left hemisphere; right: right hemisphere. A
Effect of number of acquisitions on thickness measurement

reliability

The above experiments used the average of two MPRAGE

scans for the cortical thickness measurement. In this experiment,

only a single MPRAGE acquisition is used (the first scan volume

from each scan session was chosen for all subjects except one in
The bar plots show the overall mean thickness variability, and the error bars

smoothing kernel of size r = 6 mm was applied.



Fig. 6. Comparison of thickness measurement reliability using the cross-sectional and longitudinal processing schemes. The bar plots show the overall mean

thickness variability, and the error bars indicate one standard deviation. Left: left hemisphere; right: right hemisphere. A smoothing kernel of size r = 6 mm

was applied.
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whom the first scan had obvious motion artifact; the second

volume from this session was used instead). The resulting

thickness measurement variability is compared against the case

when using the average of both scans. The results are illustrated in

Figs. 4 and 5, where Fig. 4 shows the maps of local thickness

measurement variability for the four test–retest comparisons (left

hemisphere only; the right hemisphere is similar) and Fig. 5
Fig. 7. Maps of thickness measurement variability for the longitudinal processi

smoothing kernel of size r = 6 mm was applied when generating the thickness d
compares the overall mean of the measurement error. For this

experiment, the surface smoothing kernel is fixed at 6 mm.

Comparing Fig. 4 with Fig. 2, and from Fig. 5, it is clear that

FreeSurfer performs almost as well on a single acquisition as on the

average of two acquisitions.

The results appear surprising at first glance since averaging two

acquisitions can improve the image SNR by a factor of square root
ng scheme (the left hemisphere only; the right hemisphere is similar). A

ifference maps.



Fig. 8. Maps of thickness measurement variability with the MEF sequence (the left hemisphere only; the right hemisphere is similar). Left, lateral view; right:

medial view. Note that the color scale used here is slightly different than in Fig. 2. A smoothing kernel of size r = 6 mm was applied when generating the

thickness difference maps.
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of 2, which could be expected to have a significant effect on the

reproducibility of image segmentation. However, it should be

noted that, when discriminating between two or more tissue classes

like in cortical segmentation, it is the contrast-to-noise ratio (CNR)

between tissue classes that matters. The ‘‘noise’’ in the term CNR

refers to intensity variations within each tissue class, which not

only includes background imaging noise, but also comprises

intensity variations caused either by intrinsic tissue parameter

variation across the brain or other imaging artifacts such as

intensity non-uniformity and partial volume effects. Averaging

multiple scans can only reduce background noise, but not the other

sources of intensity variations. With current scanner technology (as

for the scanners used in this study), background noise in a single-

acquisition 1 mm MPRAGE scan is usually rather low and is

certainly not the dominant factor for determining the segmentation

accuracy or reliability. We observed that normal intensity variation

within a tissue class (such as white matter) can be two or three

times larger than the standard deviation of noise in the background.

In addition, we found that it is difficult to obtain a perfect

alignment between multiple acquisitions, and the averaged image
Fig. 9. Comparison of thickness measurement reliability with the MPRAGE and M

the error bars indicate one standard deviation. Left: left hemisphere; right: right h
volume typically appears to be more blurred than individual scans,

which leads to increased error in boundary estimation and variation

in thickness measurements. All these factors should be taken into

account when designing image acquisition and data processing.

Note that, for subject populations for which movement is likely

(e.g., pediatric or cognitively impaired subjects), acquiring

multiple scans may always be desirable to ensure that there is at

least one good scan to use for data analysis. Note also that the

comparison results reported here may not be obtainable for data

acquired at old scanners or be generalized to high-resolution scans

(resolution <1 mm) where imaging noise in a single acquisition

scan is still significant.

Effect of the data processing scheme on thickness measurement

reliability

Fig. 6 compares the reliability of the longitudinal processing

scheme against the cross-sectional one in thickness measurement.

The two MPRAGE acquisitions in each scan session were used as

inputs to the processing pipeline. The surface reconstruction results
EF sequences. The bar plots show the overall mean thickness variability, and

emisphere. A smoothing kernel of size r = 6 mm was applied.



Fig. 11. Global mean cortical thickness of 5 subjects as measured from each

of four repeated scans, including two before the scanner upgrade (Sonata)

and two afterwards (Avanto). The global mean thickness measure is highly

repeatable, and there is no noticeable bias due to scanner upgrade.
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from the first scan session of each subject were used as

initialization for the processing of later scans as described in the

Materials and methods section. From the overall mean thickness

measurement error, it is clear that the longitudinal processing

scheme can further reduce the variability of the thickness

measurements. The improvement due to the longitudinal method

was found to be statistically significant at the significance level of

0.05 for all cases using paired t tests. Fig. 7 further shows the

detailed maps of local thickness measurement error for the four

comparisons. In the within-scanner test– retest case, the longitudi-

nal scheme reduces the measurement variation to be lower than

0.09 mm for most of the cortex.

It should be noted that only the thickness measurement

reliability is evaluated in this study. It is possible that errors in

the surface reconstruction of an early time point might be

propagated to a later time point with the longitudinal scheme,

thus adversely affecting the accuracy of the later time point.

Evaluating the effect of the longitudinal method on thickness

accuracy is outside the scope of this paper but is worthy of further

investigation.

Effect of different imaging sequence on thickness measurement

reliability

In this experiment, the thickness measurement reliability was

evaluated using the MEF scans acquired on the Siemens scanners.

The local thickness measurement error maps are shown in Fig.

8 and Fig. 9 summarizes their overall mean and standard deviation.

As Fig. 9 indicates, the average measurement error is less than 0.25

mm for both the within and across field strength comparisons (no

cross-platform comparisons are available since MEF data were not

acquired on the GE scanner).

Fig. 9 shows that the thickness reliability is poorer when using

the MEF sequence than when using the MPRAGE. Fig. 10 helps

explain the reason, where corresponding slices from an averaged

MPRAGE volume and an averaged MEF volume from the same

subject are shown side by side. Note that for the MEF volume a

weighted averaging was used to achieve optimal gray/white

contrast, as explained in the Materials and methods section. From

the images, it is clear that MPRAGE gives better gray/white

contrast than MEF (the average MEF image appears also more

blurred, largely due to imperfect registration between the two

individual acquisitions of different flip angles); this effect is
Fig. 10. Visual comparison of (a) MPRAGE and (b) MEF images: the MP
consistently seen in all other subjects’ data as well. In a related

study (Han et al., 2005b), we compared the CNR of the MPRAGE

and MEF sequences (and also a single echo FLASH) using a set of

manually labeled data. It was found that, even in the native space

of original echos, MEF scans still have lower gray/white CNR (as

measured by the Mahalanobis distance between the two tissue

classes) than MPRAGE, although CNR for subcortical structures is

higher. Thus, although the MEF sequence provides the advantage

of allowing tissue parameter estimation (Fischl et al., 2004a),

MPRAGE is currently a better sequence for studying morphomet-

ric changes in the cortical ribbon. Nonetheless, work is ongoing to

further improve the segmentation of MEF data, including the

investigation of better registration across different flip angles, and

segmentation in the original multi-spectral space.

Effect of scanner upgrade on thickness measurement reliability

In this experiment, cortical thickness maps were generated from

each of the four scans of the 5 subjects in the second group of test–

retest data. Note that the four scans for each subject consist of two

repeated scans before the scanner upgrade (Siemens Sonata) and

two after the scanner upgrade (Siemens Avanto). Fig. 11 plots the
RAGE image provides better gray/white CNR than the MEF image.



Fig. 12. Mean and standard deviation of thickness measurement variability before and after the scanner upgrade and variability between measurements across

the scanner upgrade. The bar plots show the overall mean thickness variability, and the error bars indicate one standard deviation. Left: left hemisphere; right:

right hemisphere. A smoothing kernel of size r = 6 mm was applied on the raw thickness maps. The scanner upgrade significantly reduces the measurement

variability, while the reproducibility error across-scanner upgrade is comparable with that on the old scanner platform.
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global mean of the cortical thickness of each subject as measured

from each individual scan session. As can be seen, the global mean

thickness measure is again highly repeatable, and there is no

noticeable bias caused by the scanner upgrade.

Fig. 12 illustrates the average thickness measurement variability

and its standard deviation for each hemisphere, computed using

repeated scans on the old and new scanner respectively and also for

repeated measurements across the scanner upgrade. Detailed maps

of the local thickness measurement variability are shown in Fig. 13

(only the left hemisphere is shown; the right hemisphere is similar).

From these figures, it can be seen that pooling data across the

scanner upgrade does not degrade the measurement reproducibility,

and the overall measurement variability across the scanner upgrade

stays roughly the same as that on the old scanner platform. It is also
Fig. 13. Maps of thickness measurement variability both before and after the scann

shown here; the right hemisphere is similar. A smoothing kernel of size r = 6 m
clear that the scanner upgrade significantly reduces the within-

scanner measurement variability, which is below 0.1 mm in

average for both hemispheres (a smoothing kernel of size r = 6

mm was used). In a separate study (Jovicich et al., 2005), it was

found that the scanner upgrade substantially improves the image

intensity reproducibility across repeated scans of the same subject,

which we believe is the major reason for the much improved

thickness measurement reliability.

Power analysis

Using the measurement error estimation from the reliability

studies, we computed the sample size table shown in Table 2,

where we assumed a significance level of 0.05 (one-sided) and a
er upgrade. Left, lateral view; right: medial view. Only the left hemisphere is

m was applied when generating the thickness difference maps.



Table 2

Calculation of the sample sizes (subjects per group) required to detect

(significance level at 0.05, one-sided, statistical power of 0.9) thickness

difference effects under various conditions of measurements errors (cf. Figs.

1, 3 and 6)

Underlying cortical thickness difference effect

to be detected (mean thickness = 2 mm)

10%a 5%b 2.5%c

Measurement

error (STD)

1%d 2 2 4

4.5%e 5 15 57

6%f 7 26 100

7.5%g 11 40 155

a Approximate effect size for between group differences comparing AD

patients to controls.
b Approximate effect size for longitudinal comparison of atrophy rates in

AD vs. controls.
c Approximate effect size for drug that slows rate of atrophy in AD by

50% in 1 year.
d Conditions for sample data pooled within scanner, analyzing global

mean thickness.
e Conditions for sample data pooled within scanner, analyzing local

thickness maps, applying longitudinal analysis methods (longitudinal group

comparison study).
f Conditions for sample data pooled within scanner, analyzing local

thickness maps (cross-sectional group comparison study).
g Conditions for sample data pooled across scanner and across field

strength, analyzing local thickness maps, applying longitudinal analysis

methods (multi-center longitudinal clinical drug trial).
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statistical power of 0.9. Three scenarios are used to illustrate the

application of the techniques used in this paper to clinical

neuroscience research. For a study that aims to find group

differences in cortical thickness in Alzheimer’s disease compared

to controls, subjects are typically scanned on the same scanner and

data would be analyzed cross-sectionally. The average measure-

ment standard deviation is about 0.12 mm (with a 6 mm spatial

smoothing kernel for the thickness maps; cf. Figs. 3 and 6) or 6%

of the cortical ribbon (assuming a mean cortical thickness of 2

mm). The computation shows that it requires 7 subjects per group

(or 14 subjects in total) to detect a thickness difference of 10% (0.2

mm) (Thompson et al., 2003). For a study that aims to find group

differences in the rate of regional cortical atrophy in Alzheimer’s

disease compared to controls, subjects are typically scanned on the

same scanner and data would be analyzed longitudinally. The

number of subjects required for this type of study is 15 per group,

based on an estimated effect size of 5% (0.1 mm) (Thompson et al.,

2003) and a measurement error of 4.5% (0.09 mm; cf. Fig. 6).

Finally, for a longitudinal, multi-center clinical drug trial of a

compound that aims to slow the rate of atrophy by 50% in 1 year in

a group of AD patients compared to a placebo group, subjects

would be scanned on different scanners and data would be

analyzed longitudinally. The number of subjects required for this

type of study is 155 per group, based on an estimated effect size of

2.5% (0.05 mm) and a measurement error of 7.5% (0.15 mm; cf.

Fig. 6).
Conclusion

The purpose of this study is to evaluate the reliability

(precision) of an automated thickness measurement method both
within- and across-scanner platforms and field strength. We also

evaluated the effects on thickness measurement reliability of

different imaging acquisition protocols (including number of

acquisitions and imaging sequences) and different data processing

or post-processing (smoothing of thickness map) schemes. Finally,

we investigated the impact of a scanner upgrade on thickness

measurement reproducibility. The results reported in this paper can

help the design and assessment of multi-site or longitudinal studies

that require accumulating data across multiple scanner platforms or

across major scanner upgrades.

Two sets of test–retest scans were acquired and analyzed in

this reliability study. From the first data set, within-scanner

variability was found to be less than 0.03 mm for global cortical

thickness measurement and approximately 0.12 mm in average

for local thickness measurement (with a small spatial smoothing

of kernel size 6 mm). The variability of local thickness

measurements is slightly increased to about 0.15 mm in average

across platforms (Siemens and GE) and further increased to 0.17

mm across different field strengths. Although the measurement

variability is still low, it was found that thickness measurements

across field strength were slightly biased. This measurement bias

must be taken into account in the design of multi-site or

longitudinal studies that acquire data across field strength, the

effect of which could be reduced by balancing subject popula-

tions across field strength or by deriving new pulse sequences

that can minimize the differences in image contrast under

different field strengths.

The results from the second data set allow us to conclude that

the thickness measurements were not affected by the scanner

upgrade evaluated. In particular, the major upgrade does not

increase the measurement variability nor introduce any bias to the

thickness measurements. The within-scanner measurement vari-

ability, however, can be further reduced when acquiring data only

on the newer scanner platform, reflecting the increased SNR and

stability afforded by the Siemens Avanto scanner when compared

to that of the Sonata system.

Other results showed that between one or two averaged

MPRAGE scans there was a negligible effect on thickness

measurement reliability, but different data processing or post-

smoothing schemes and different imaging sequences can have a

large impact on the thickness measurement reproducibility. For

example, thickness measurement variability can be substantially

reduced by applying smoothing filters on the raw thickness

maps. The choice of smoothing kernel size in practice should

depend on the estimation of measurement noise and also on

the spatial scale or resolution of the thickness change to be

found.

Overall, predictions from the test– retest results indicate that a

group difference of 0.2 mm (10%) in regional cortical thickness

may be reliably identified with as few as 7 subjects per group when

using data acquired on the same scanner platform, or as few as 11

subjects per group if using data pooled across multiple scanner

platforms. Thus, we can conclude that FreeSurfer is a highly

reliable method for automated cortical thickness measurement and

may be a useful tool for the investigation of longitudinal brain

development, pathophysiological brain changes and the efficacy of

clinical interventions.

It should be noted that the study reported in this manuscripts is

not a random effects study and the results should not be blindly

extrapolated to other pulse sequences and other scanners or scanner

types not included in this study.
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