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Abstract - We present a technique for automatically assigning a neuroanatomical label to 

each location on a cortical surface model based on probabilistic information estimated from a 

manually labeled training set.  This procedure incorporates both geometric information derived 

from the cortical model, and neuroanatomical convention, as found in the training set. The result 

is a complete labeling of cortical sulci and gyri. Examples are given from two different training 

sets generated using different neuroanatomical conventions, illustrating the flexibility of the 

algorithm. The technique is shown to be comparable in accuracy to manual labeling.  

Keywords:  morphometry, MRI, parcellation, segmentation. 

 

1 Introduction 

Techniques for labeling geometric features of the cerebral cortex are useful for analyzing a variety of 

functional and structural neuroimaging data (Rademacher, Galaburda et al., 1992; Caviness, Meyer et al., 

1996; Paus, Otaky et al., 1996; Seidman, Faraone et al., 1997; Goldstein, Goodman et al., 1999; 

Lohmann, von Cramon et al., 1999; Goldstein, Seidman et al., 2001; Goldstein, Seidman et al., 2002).  In 

many cases, what is desired is not a labeling of a discrete set of cortical features, but rather the 

identification of every point in the entire cortex. This type of labeling is known as a parcellation. 

Unfortunately, despite their potential utility, cortical parcellations are not commonly used in the 

neuroimaging community due to the difficult and time-consuming nature of the task of manually 

parcellating the entire cortex from high-resolution MRI images. While many techniques exist for labeling 

parts of the cortex (Mangin, Frouin et al., 1995; Thompson, Schwartz et al., 1996; Valiant, Davatzikos et 

al., 1996; Sandor and Leahy, 1997; Lohmann, 1998; Lohmann and von Cramon, 1998; Goualher, Procyk 

et al., 1999; Lohmann and von Cramon, 2000; Rettmann, Han et al., 2002), none of them provides an 

automated procedure for generating a complete and detailed labeling of the entire cortex that can 
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incorporate prior information as well as cortical geometry into the labeling. 

The inclusion of prior information is a critical feature of a cortical parcellation algorithm. The reason 

this is the case is that the divisions that are useful in a cortical parcellation scheme can be based on 

properties of the brain other than cortical geometry. Many disparate pieces of information, such as 

knowledge of structure-function relationship, and cytoarchitectonic or receptor labeling properties of 

regions, may be used by a neuroanatomist in generating a cortical parcellation – information that is not 

directly available to an automated parcellation procedure from magnetic resonance imaging (MRI) data. 

A trivial example of this is the fact that many unbroken sulci change names as lobar boundaries are 

crossed. In addition, functional heterogeneity can make it desirable for adjacent areas to be assigned 

different labels despite the absence of macroscopic cortical features to distinguish them. Conversely, there 

are situations in which the secondary folding structure of the cortex (i.e. folds within folds) carries 

information, such as the location of the hand area in primary motor cortex, which is well predicted by a 

posterior-pointing secondary fold in the precentral gyrus (Boling, Olivier et al., 1999). 

Various approaches have been taken to the problem of labeling of cortical features. For example, 

Sandor and Leahy (Sandor and Leahy, 1997) use a manually labeled atlas brain, which is then warped 

into correspondence with an individual subject's surface model.  The individual subject surface then 

inherits the labels from the atlas. Similar surface-fitting approaches have been developed by (Thompson, 

Schwartz et al., 1996; Valiant, Davatzikos et al., 1996; Lohmann, 1998; Lohmann and von Cramon, 1998; 

Lohmann and von Cramon, 2000). A graph-based approach is taken in (Goualher, Procyk et al., 1999), in 

which sulci are represented by vertices in the graph and arcs connecting them represent their relationship 

to one-another. A manual training set is then used in order to generate a semi-automated procedure for 

assigning neuroanatomical labels to the detected sulci.  Another graph-based approach was taken in 

(Mangin, Frouin et al., 1995), in which a 3D skeletonization of cortical sulci that is robust to topological 

errors is generated and used to construct a graph for sulcal labeling. A somewhat different technique was 

developed by (Lohmann, 1998). In this approach, sulci are not represented as abstract quantities such as 

vertices in a graph, but instead are derived using a watershed transform on an MR volume. This work was 

extended by (Rettmann, Han et al., 2002) to the use of surface models. The segmented regions identified 
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by the watershed transform are then manually labeled by a trained neuroanatomist. 

Here we present a technique for using manually labeled data as the basis for an automated 

parcellation procedure, using an intrinsically cortical coordinate system to store prior statistics and class-

conditional densities (Fischl, Sereno et al., 1999; Fischl, Sereno et al., 1999). The use of the manual 

parcellation as a training set allows the technique to incorporate neuroanatomical convention into the 

parcellation in regions in which geometry alone is not predictive of a parcellation label. The procedure 

models the parcellation labels as a first order anisotropic nonstationary Markov random field (MRF), 

allowing it to capture the spatial relationships between parcellation units that are present in the training 

set. The anisotropy separates label probabilities in the first and second principal curvature directions, in 

order to encode the increased probability of differing labels in the direction of maximal curvature. This 

type of modeling allows the procedure to automatically encode information such as “precentral gyrus 

frequently neighbors central sulcus in the direction of high curvature (moving across the sulcus), but not 

in the direction of low curvature (along the banks of the sulcus)”. This type of parcellation has commonly 

been generated by a having a trained anatomist or technician manually label some or all of the structures 

in the cortex, a procedure that can take up to a week for high-resolution images. Here, we use the results 

of the manual labeling using the validated techniques of the Center for Morphometric Analysis (CMA) 

(Rademacher, Galaburda et al., 1992; Caviness, Meyer et al., 1996) to automatically extract the 

information required for automating the parcellation procedure. In addition, in order to demonstrate that 

the technique is sufficiently flexible to encode a different set of neuroanatomical conventions, we show 

comparable results using an entirely different surface-based (SB) parcellation scheme (Destrieux, Halgren 

et al., 1998). 

2 Materials and Methods 

Local spatial relationships between labeled structures have been encoded by modeling the labeled 

image using Markov random fields (MRFs) in a variety of image processing contexts, dating back to their 

introduction (Geman and Geman, 1984). In the MRF approach, the probability of a label at a given 

position is computed not just in terms of the data and prior probabilities at that position, but also as a 
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function of the labels in a neighborhood around the point in question. In the context of segmenting MR 

images, isotropic (all directions are equal) and stationary (the probabilities are the same for all spatial 

locations) MRFs have been used to provide smoothness constraints on a given segmentation (Held, Kops 

et al., 1997; Kapur, Grimson et al., 1998; Zhang, Brady et al., 2001).  In this way, the prior probability of 

a label is computed by examining how likely the label is given the labels of its neighbors, regardless of 

the direction of the neighbor, or the position within the brain. While this type of approach can obviate the 

need for prefiltering of the images, it does not provide for the use of information regarding the spatial 

relationships of classes to one another. Anisotropic MRFs have been used in the context of segmenting 

MRI volumes in order to disambiguate the problem of labeling subcortical structures (Fischl, Salat et al., 

2002), work which is extended here to the labeling of the cortical surface.1 

Thus, we base the cortical parcellation procedure on a number of pieces of information incorporated 

into a space-varying classification procedure. That is, class statistics (e.g. means and covariance matrices) 

are tabulated regionally throughout an atlas space, using a registration procedure that optimally aligns 

cortical folding patterns (Fischl, Sereno et al., 1999).  Prior probabilities are computed via a frequency 

histogram in the atlas space, allowing the calculation of the probability that each parcellation label occurs 

at every atlas location. Finally, the prior probability of a given spatial arrangement of parcellation labels 

is incorporated into the final parcellation procedure. These priors are also computed from a training set, 

examples of which are given in Figure 1, for each point in the atlas by modeling the parcellation as an 

anisotropic nonstationary Markov random field, resulting in a procedure that is comparable in terms of 

accuracy to manual labeling. 

                                                      
1 Note that the derivations in the following sections closely follow those in (Fischl, Salat et al., 2002). 
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Figure 1. Lateral views of 5 left hemisphere examples of the CMA (top two rows) and SB (bottom two 

rows). Each pair of inflated (above) and pial (below) surface representations is from the subject. 

2.1 Problem Statement 

 The problem of automatically labeling cortical gyri and sulci can be naturally phrased within the 

framework of Bayesian parameter estimation theory. In this approach, one can relate the probability of a 

parcellation P given the observed surface model S to the probability of the geometry of the 

surface model occurring given a certain parcellation, together with the prior probability of the 

segmentation : 

)|( PSp

)(Pp

(1)  )()|()|( PpPSpSPp ∝

The primary advantage of the Bayesian approach is that it allows for the explicit incorporation of 

prior information via the p(P) term in equation (1). In order to render the problem more tractable in the 

face of the large degree of variability in cortical folding patterns, both the priors on P and the conditional 

probability of observing the surface given the classification p(S|P) can be expressed within an atlas space, 

allowing them to vary as a function of position on the cortical surface (hence making them nonstationary). 



 

7 

The advantage of using an atlas space is that coordinates in the atlas have more anatomical meaning than 

the native coordinate system of the image (Bajcsy, Lieberson et al., 1983; Bookstein, 1989; Miller, 

Christensen et al., 1993; Gee, Haynor et al., 1994; Vannier, Miller et al., 1994; Christensen, Rabbitt et al., 

1996; Collins, Le Boualher et al., 1996; Ashburner, Neelin et al., 1997; Collins and Evans, 1997; Woods, 

Grafton et al., 1998; Fischl, Sereno et al., 1999; Thompson, Woods et al., 2000). Classifiers can then be 

distributed throughout the atlas, allowing each one to focus on only the small number of classes that may 

occur within the region for which the classifier is responsible. The number of classes that occur within a 

region of space is then directly related to the accuracy of the atlas coordinate system. That is, P(P(r)=c) 

will be 0 for all but a few values of c at each atlas location r. In practice, if the classifiers are reasonably 

dense in the atlas space then the number of classes at each location is typically relatively small. In this 

way, the intractable problem of classifying each surface node into one of 80 or so labels is decomposed 

into a set of tractable problems of classifying the nodes in each region of the surface model into only a 

small number of labels.  

 The definition of the atlas requires the calculation of a function f(r), which takes native image 

coordinate as input, and returns the coordinate of the corresponding point in the atlas. For f to be useful in 

this context, the coordinates it returns should be related to the anatomical location of r. This type of 

mapping therefore provides the ability to meaningfully relate coordinates across subjects.  In the most 

general case, we wish to maximize the joint probability of both the parcellation P and the atlas function f: 

(2)  )()|(),|()|,( fpfPpfPSpSfPp ∝

The terms  and in equation (2) provide a natural means for incorporating atlas 

information into the parcellation procedure. The first term encodes the relationship between the class 

label at each atlas location and the predicted surface geometry. Using the atlas space, we can allow the 

class statistics to vary as a function of location, allowing the within-class variations in surface geometry, 

such as secondary and tertiary cortical folds, to be incorporated into the classification procedure. The 

second term allows the expression of prior information regarding the spatial structure of the parcellation 

labels. Finally, the term  provides a means for constraining the space of allowable atlas functions 

(e.g., continuity, differentiability, and invertibility). In the following, we will use the atlas function f 

),|( fPSp

( fp

)|( fPp

)
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described in (Fischl, Sereno et al., 1999), which establishes a spherical surface-based coordinate system 

for each cortical hemisphere. 

2.2 Atlas Construction 

In general, two different approaches have been taken to the construction of anatomical atlases from 

neuroimaging data. The first is to use an individual as a template, and either manually or automatically 

estimate a transformation that aligns each new dataset with the individual template (e.g. (Talairach, Szikla 

et al., 1967; Talairach and Tournoux, 1988; Van Essen and Drury, 1997; Van Essen, Drury et al., 1998)). 

The alternative is to compile a probabilistic atlas based on the anatomy of a large number of subjects (e.g. 

(Collins, Neelin et al., 1994; Fox, Mikiten et al., 1994; Mazziotta, Toga et al., 1995; Thompson, 

MacDonald et al., 1997; Thompson, Woods et al., 2000)).  Each of these approaches has strengths and 

weaknesses. The former allows one to represent anatomical structures at as fine a scale as the 

neuroimaging technology allows, but the atlas is then biased by the idiosyncrasies of the individual 

anatomy chosen as the template. The latter technique resolves this problem by averaging across 

anatomies, thus only retaining that which is common in the majority of subjects. Nevertheless, the cross-

subject averaging removes potentially useful information in the atlas.  Here, we preserve the advantages 

of each technique by using a group of subjects to construct an atlas that retains information about each 

parcellation unit at each point in space. Given the atlas function f, and a group of N manually parcellated 

subjects, we first estimate the prior probability of parcellation label c occurring at each atlas location, 

independent of all other locations: 

(3) 
set   trainingin the   tomap that nodes of #

)(location at  occurred  class  timesof #))((
r

rr fccPp ≈=  

The geometry of the observed surface S at each point is summarized by two quantities encoded as a 

vector G(r) at each point in the surface (note that here r refers to spherical atlas coordinates, and f(r) 

refers to individual subject spherical coordinates). The first of these is the average convexity as defined in 

(Fischl, Sereno et al., 1999), while the second is the mean curvature of the surface (do Carmo, 1976). 

Additional quantities such as MRI derived variables (e.g., T1 and T2), Gaussian curvature, cortical 

thickness; etc… can easily be incorporated into this framework. The likelihood of observing the surface 
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geometry G given the parcellation label P(r) is modeled as a Gaussian, the parameters of which are 

computed from the manually labeled training set: 

(4) ∑
=

=
M

i
ic f

M 1

))((1)( rGrµ , 

where Gi are geometric parameters extracted from each of the set of M surfaces for which label c occurs at 

location f(r) in the corresponding manually labeled surface models Si (i.e. Si(f-(r))=c). The covariance 

matrix for class c at location r in the atlas is then given by: 

(5) ∑
=

−−
−

=
M

i

T
cicic ff

M 1

))())(())(())(((
1

1)( rµrGrµrGrΣ , 

Information about surface geometry is thus maintained separately for each parcellation label at every 

location in the atlas, obviating the need to average geometric information across classes.  Finally, we also 

estimate the pairwise probability that parcellation label c2 is the neighbor at ri when parcellation label c1 

is the label at r, for r , where N(r) is a neighborhood function of r. )(rNi ∈

(6) 
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As before, this information is stored separately for each atlas location. It is important to note that the 

probabilities are stored separately for each pair of classes as well as for each neighborhood location ri. 

While it may seem that this would lead to combinatorial explosion and intractable memory requirements, 

in practice the space is sparse as relatively few configurations of parcellation labels actually occur. Two 

examples of the manual labeling that is the basis for the atlas are given in Figure 1. The spherical atlas 

space is made up of a pair of super-sampled icosahedra. The priors are stored at essentially the same 

resolution as the individual surface models, using an icosahedral model with 163842 vertices at 

approximately 1 mm spacing, while the class conditional densities are stored 2562 vertices at 

approximately 4 mm spacing, reflecting the slower variation of surface geometry for each label. 

2.3 Parcellation 
As mentioned above, the Bayesian approach allows us to incorporate prior information that is 
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necessary for the parcellation procedure. This prior information takes two forms. The first makes use of 

the global spatial information provided by f and the atlas in order to express the probability that a given 

parcellation label occurs at a particular location in the atlas, independent of the local surface geometry. 

The second encodes the local spatial relationship between parcellation labels, allowing information such 

"precentral gyrus can be anterior, superior or inferior to central sulcus, but never posterior to it" to be 

automatically detected and incorporated into the segmentation. 

 Formally, we compute the maximum a posteriori (MAP) estimate of the parcellation P given an 

input surface geometry G, and the nonlinear spherical transform f.  The MAP estimate can be expressed as 

maximizing p(P|G,f), the probability distribution of the parcellation given the observed surface geometry 

and the atlas function. Using Bayes rule we can relate this to the product of the probability of observing 

the surface geometry with the prior probability of a given spatial configuration of labels p(P): 

(7)  )(),|(),|( PpfPpfPp GG ∝

Assuming the noise at each vertex is independent from all other vertices in the surface model, we can 

rewrite p(G|P,f) as the product of the distribution at each vertex over the surface: 

(8)  ))(|))(((),|( rrGG
r

PfpfPp
S

∏
∈

=

Note that in the more general case in which the spatial correlation structure of the noise is constant 

across space, the equality in (8) should be replaced by proportionality (Worsley, Evans et al., 1992; 

Thompson, Schwartz et al., 1996), which does not effect any of the subsequent derivations. The 

distribution of the geometric properties of each class at each location in the atlas is modeled as a 

Gaussian, the mean vector µc(r) and covariance matrix Σc(r) of which are computed using equations (4) 

and (5). The probability of observing the geometry at G(f(r)) is then expressed as: 

(9) ))())((()())())(((5.0exp(
2)(

1))(|))((( 1
2/1 rµrGrrµrG

r
rrG cc

T
c

c

ffcPfp −Σ−−
Σ

== −

π

 

All that remains is to find an expression for the prior probability of a given parcellation P. Here we 

assume that the spatial distribution of labels can be well approximated by an anisotropic nonstationary 
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Markov random field. This allows one to encode prior information about the relationship between labels 

as a function of location within the cortex (i.e., nonstationary), as well as with local direction (i.e., 

anisotropic). Formally, the Markov assumption can be expressed as: 

(10) , )()),(),...,(),(|)((})){(|)(( 21 rrrrrrrr NPPPPpSPPp iK ∈=−

That is, the prior probability of a label at a given vertex r is only influenced by the labels within some 

neighborhood of r. The locality restriction imposed by the Markov model permits the probability of the 

entire parcellation to be written in terms of neighborhood or clique potentials Vc(P) via the Hammersley-

Clifford theorem (Besag, 1974). That is, the probability p(P) can be equivalently characterized by a Gibbs 

distribution: 

(11) )(1)( PUe
Z

Pp −= , 

where Z is a normalizing constant and will be dropped in the following, and U(P) is an energy function 

that can be written in the form: 

(12)  ∑=
c

c PVPU )()( ,

The clique potentials Vc(P) encode the energy associated with a certain configuration of labels within 

the cth clique. Choosing Vc(P) to be –log(p(P(r)|P(r1),P(r2)…P(rK)), where r is the central vertex of the cth 

clique, allows us write the probability of the entire parcellation as the product of the probability of the 

label at each vertex, given its neighborhood: 

(13) , )()),(),...,(),(|)(()( 21 rrrrrr
r

NPPPPpPp iK
S

∈= ∏
∈

Using Bayes rule, we can rewrite this as: 

(14) , )()),(|)(),...,(),(())(()( 21 rrrrrrr
r

NPPPPpPpPp iK
S

∈∝ ∏
∈

Equation (14) allows the probability of a given label to be modulated by any configuration of 

neighboring labels. While this would be extremely useful, it is unfortunately not computationally 

tractable to implement, as one would need to compute separate prior probabilities for every combination 

of neighboring labels that occur. Instead, we make the simplifying assumption that only the first order 
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conditional dependence is important. That is, that the dependence of a label on its neighbors can be 

expressed as the product of the probability given each of the neighbors: 

(15) , ∏
∈

=
)(

21 )),(|)(())(),...,(),(|)((
rr

rrrrrrr
N

iiK
i

PPpPPPPp

where again we have explicitly included the dependence on the neighbor location ri to emphasize that the 

probability densities are maintained separately for each neighbor position in N(r). Using this assumption, 

we arrive at an expression for the prior probability of the full parcellation: 

(16)  ∏ ∏
∈ =

∝
S

K

i
ii PPpPpPp

r

rrrr
1

)),(|)(())(()( ,

Equation (16) allows two types of prior information to be incorporated into the segmentation 

procedure. The approximate location a surface feature may occupy within the cortex is given by p(P(r)), 

which is computed and stored in the atlas using equation (3). The local relationship between parcellation 

labels is encoded in p(P(ri)|P(r),ri) using equation (6). We currently let the neighborhood function N(r) 

include the two principal directions on the surface at each location in the atlas space. This allows the 

parcellation procedure to store information separately for the direction of highest curvature from that of 

the direction of lowest curvature, as the majority of borders occur in the former. 

Directly computing the global MAP estimate of P in equation (7) using the Markov model of equation 

(16) is computationally intractable. Instead, we employ the iterated conditional modes (ICM) algorithm 

proposed by Besag (Besag, 1986).  In this approach, the parcellation is initialized with the MAP estimate 

assuming p(P(ri)|P(r),ri) is uniform,  as no label has yet been assigned to each vertex. The parcellation is 

then sequentially updated at each location by computing the label P(r), that maximizes the conditional 

posterior probability p(P(r)|P(ri),G,ri): 

(17) 

 

∏
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======
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cPPpcPpcPfpfPcPpP
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),)(|)(())(())(|))((())),((),(|)(()( maxarg rrrrrrGrrGrrr

Equation (17) is then iteratively applied until no vertices are changed. Snapshots of the evolution of 

this procedure are given in Figure 2. As can be seen convergence is rapid, resulting in a procedure that 

requires approximately 3 minutes on a 1.5 GHz Pentium III. A small amount of and postprocessing is 
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carried out on the results of the labeling to relabel small isolated patches of label to the most likely of the 

neighboring labels. 

 

Figure 2. Snapshots of the ICM algorithm. From left to right: initial configuration, first, second, and 

final configuration (after 14 iterations). 

3 Results and Discussion 

Here we present the results of applying the surface-based parcellation technique to two different 

parcellation schemes. The first is the volumetric one in use at the MGH Center for Morphometric 

Analysis (CMA) as described in (Rademacher, Galaburda et al., 1992; Caviness, Meyer et al., 1996), 

which defines approximately 58 separate labels (see Appendix 6.1 for a complete list), while the second is 

an intrinsically surface-based (SB) parcellation (Destrieux, Halgren et al., 1998) based on the conventions 

established in (Duvernoy, 1991) with 85 separate parcellation units (see Appendix 6.2). For the CMA 

parcellation we first sample the volumetric labeling onto the reconstructed cortical surface of each subject 

(Dale, Fischl et al., 1999; Fischl, Sereno et al., 1999; Fischl and Dale, 2000; Fischl, Liu et al., 2001), the 

subsequent procedures for the two parcellations are identical. 

The data used for the CMA parcellation are part of an ongoing study of schizophrenia (Seidman, 

Faraone et al., 1997; Goldstein, Goodman et al., 1999; Seidman, Faraone et al., 1999; Goldstein, Seidman 

et al., 2002). As part of this study, 36 MRI volumes (2 MP-RAGE scans per subject, motion corrected and 

averaged) have been manually parcellated by trained technicians2. Cortical models were reconstructed for 

each of the subjects using previously presented techniques, including non-rigid surface-based alignment 

to a previously constructed spherical atlas (Dale and Sereno, 1993; Dale, Fischl et al., 1999; Fischl, 

Sereno et al., 1999; Fischl, Sereno et al., 1999; Fischl and Dale, 2000; Fischl, Liu et al., 2001). The 
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manual parcellations were then sampled onto the cortical models at the midpoint of the cortical ribbon 

using the thickness estimates described in (Fischl and Dale, 2000). For the SB parcellation, cortical 

surface models were reconstructed for 12 subjects. Surface-based drawing tools that are part of the 

FreeSurfer software package (http://surfer.nmr.mgh.harvard.edu) were then used to generate a complete 

parcellation for all 24 cortical hemispheres (we expect to post the automatic parcellation software to this 

website by the end of June, 2003). In order to validate the accuracy of the automated parcellation 

algorithm, we employed a jackknife/leave-one-out technique in which one dataset is removed from each 

training set, an atlas is constructed, and used to parcellate the left-out set. The error is then quantified 

point-by-point as the percentage of points at which the manual and automated parcellation are in 

disagreement. Figure 3 presents the results of this study on an average inflated surface (dark gray are 

sulcal regions, and light gray are gyral ones). Note that the vast majority of the surface is below threshold 

(i.e. accuracy >75%) for both the CMA parcellation on the left as well as the SB parcellation on the right. 

with the median accuracy at approximately 81% for the left hemisphere and 83% for the right for the 

CMA parcellation, and 80% (left) and 79% (right) for the SB (the slightly lower accuracy for the SB 

parcellation is no doubt due to the greater number of parcellation units in it, some of which are quite 

small). In addition, the low-accuracy regions are clustered at the boundaries between labels, the precise 

positions of which are somewhat arbitrary in the manual training set. 

                                                                                                                                                                                                     

75% 75%

25% 25%

2 Note that as the study is not yet complete, we are blinded to diagnosis. 

http://surfer.nmr.mgh.harvard.edu/
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75%

25%

Figure 3. Map of % incorrect for the CMA (left) and the surface-based (right) parcellations. Top: 

lateral view, middle: medial view, bottom: ventral view. Note that the majority of the surface is correct 

more then 75% of the time in both parcellation schemes. 

 The distribution of accuracy collapsed across each cortical hemisphere is given in Figure 4 for the 

CMA parcellation and Figure 5 for the SB parcellation. The top rows display histograms of the percent 

correct for the left and right hemispheres, while the bottom row is the cumulative histogram of the same 

data. As can be seen, almost 40% of the surface was correct 100% of the time for both hemispheres for 

both of the parcellation schemes. 
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Figure 4. Total percent accuracy for the automated CMA parcellation (integrated across each cortical 

hemisphere). Top row: histogram of percent accuracy for the left (left) and right (right) hemispheres. 

Bottom row: cumulative histograms for the same. 



 

17 

 



 

18 

 

Figure 5. Total percent accuracy for the SB parcellation (integrated across each cortical hemisphere). 

Top row: histogram of percent accuracy for the left (left) and right (right) hemispheres. Bottom row: 

cumulative histograms for the same. 

 A scatter plot of the accuracy of the individual subjects is given in Figure 6 CMA parcellation 

(left) and the SB parcellation (right). Interestingly, a single outlier can be seen in the left hemisphere of 

both parcellation sets. In both cases this is a subject with a rare folding pattern – a split central sulcus, and 

even in these case, the accuracy is close to 70%. As our database of manually labeled examples grows, we 

expect these types of rare neuroanatomies to be handled with better accuracy (the training set that was 

used for this subjects actually contained NO examples of this type of folding pattern, as it was of course 

left out during construction of the classifiers for labeling it). 
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Figure 6. Scatter plot of accuracy for CMA (left) and surface-based (right) parcellations.  The median 

accuracies are 78% and 79% respectively. 

In order to directly compare the automated and manual parcellations we computed the mean and 

standard errors of the surface area of a set of cortical features across all the subjects in each dataset, using 

the two techniques for each of the parcellation schemes. This comparison is given in Figure 7 for the 

CMA parcellation, and Figure 8 for the SB parcellation. As can be seen, the surface area for a variety of 

cortical regions as assessed by the manual (light bars) and automated (dark bars) parcellations is 

essentially indistinguishable from a statistical standpoint, although it is worth pointing out the uniformly 

smaller error bars of the automated technique, indicating it is a potentially more powerful technique for 

detecting variations in cortical surface area. 
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Figure 7. Comparison of mean and standard error of the surface area of 10 of the CMA parcellation 

units across 36 subjects (left hemisphere on the left, and right hemisphere on the right) for the manual 

(white bars) and automated (black bars) parcellations. FP – frontal pole, INS – insula, F1 – superior 

frontal region, F2 – middle frontal region, F3t – inferior anterior middle frontal region, F3o – inferior 

posterior middle frontal region, PRG – precentral gyrus, TP – temporal pole, T1a – anterior superior 

temporal sulcus, T1p – posterior superior temporal sulcus. 
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Figure 8. Comparison of mean and standard error of the surface area of 10 of the surface-based 

parcellation units across all 12 subjects (left hemisphere on the left, and right hemisphere on the right) for 

the manual (white bars) and automated (black bars) parcellations: Scal – calcarine sulcus, Scen – central 

sulcus, Spost – postcentral sulcus, Gpre – precentral gyrus, Gcun – cuneus, Sst – superior temporal 

sulcus, GsF – superior frontal gyrus, Spo – parietooccipital sulcus, Scing – cingulate sulcus, SsF – 

superior frontal sulcus. 

Finally, a visual comparison of the automated and manual parcellation for the subject with the median 

accuracy in each the dataset is given in Figure 9. Note that many of the small protuberances in the manual 

CMA parcellation (on the left) are almost certainly errors in the manual labeling. We are currently 

developing an intrinsically surface-based adaptation of this parcellation that will minimize this type of 

error. In addition, the automated parcellation can be used to correct errors in the manual labelings, 

although of course these datasets could not be used for validation of the automated technique after 

correction. 
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Figure 9. Manual (left) and automated (right) parcellation results for the subject with the median 

accuracy. Top, middle and bottom rows are lateral, medial and ventral views respectively. 

4 Conclusion 

Labeling of cortical features is a technique that has been shown to have many neuroscience 

applications dating back to classic studies on functional lateralization (Geschwind and Levitsky, 1968). 

More recently, Schlaug and colleagues have found differences in musicians and non musicians in 

perirolandic cortex (Schlaug, Jäncke et al., 1995), while Boling et al. have shown folding patterns to be 

predictive of the location of the motor representation of the hand (Boling, Olivier et al., 1999). Witelson 

and Kigar demonstrated asymmetries in the sylvian fissure that relate to handedness (Witelson and Kigar, 
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1992), while Goldstein and colleagues carried out an extensive study of sexual dimorphism both 

cortically and subcortically (Goldstein, Seidman et al., 2001), as well as the disruption of normal sexual 

dimorphism in schizophrenia (Goldstein, Seidman et al., 2002).  Other applications include assessments 

of normal anatomical asymmetry in the sylvian fissure (Rubens, Mahowald et al., 1976), planum 

temporale changes in Neurofibromatosis (Billingsley, Schrimsher et al., 2002) and autism (Rojas, Benkers 

et al., 2002). Schizophrenia researchers have found effects in many cortical regions including the planum 

temporale (Barta, Pearlson et al., 1995; Hirayasu, McCarley et al., 2000), the angular gyrus 

(Niznikiewicz, Donnino et al., 2000), the hippocampus (Seidman, Faraone et al., 1997), as well as the 

middle frontal gyrus, orbitofrontal cortex, the anterior and paracingulate gyri and the supramarginal gyrus 

(Goldstein, Goodman et al., 1999). 

While manual methods exist for assessing this type of change, the process of manually parcellating an 

entire high-resolution structural MR volume requires on the order of a week for a trained neuroanatomist 

or technician. This makes the routine analysis of large patient and control populations untenable. Finally, 

manual labeling procedures do not generalize well to the use of multidimensional inputs such as cortical 

thickness measures, intrinsic MRI tissue parameters and cortical geometry, which can be easily 

incorporated into the automated parcellation procedure. 

The automated method described in this paper for assigning a neuroanatomical label to every point in 

the cortex has been shown to be comparable in terms of accuracy to a previously validated method of 

manual parcellation. The accurate labeling of a large number of cortical structures is enabled through the 

use of both global and local spatial information. The global information is encoded by distributing 

classifiers throughout an atlas in a surface-based coordinate system and maintaining class statistics on a 

per-class, per-location basis, allowing the classifiers to be robust to variations cortical folding patterns. 

Local information is incorporated into the classification procedure by modeling the parcellation as a 

nonstationary anisotropic Markov random field. The introduction of anisotropy and nonstationarity into 

the parcellation model allows the spatial relationships of parcellation units to one another to be 

incorporated into the procedure in a principled fashion. 

The automatic parcellation procedure can also be used to automatically define regions of interest 
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(ROIs) for use in functional imaging studies. Specifically, this will allow one to generate average time 

courses by cortical region, or even parts of regions, facilitating for example the comparison of the 

response of the motor cortex to that of somatosensory cortex, or anterior superior temporal sulcus (STS) 

to the posterior STS. 

While the results presented here are comparable to those achievable by current manual labeling 

techniques, we intend to extend them in a number of ways. Primarily, we will investigate the relationship 

between the manual and automated labelings of each brain. In particular, the CMA parcellation technique 

is defined in the volume using slice-based viewers, and is currently being updated to use surface-based 

drawing and visualization tools. When complete, we expect the surface-based extension of the CMA 

parcellation to be significantly more accurate than the labeling based on the volumetric parcellation. As 

part of this process, we will perform structure-by-structure analysis of variability both across manual 

labelings, and between manual and automated labelings for each of the manual training sets. This analysis 

should allow us to identify regions of low reliability, which will require either updating the definition of 

the parcellation labels in the case that neither the automated nor the manual labelings is reliable, or the 

inclusion of additional information into the automated parcellation procedure. This may include the 

relationship of the cortical regions to subcortical structures, as well as additional cortical information (e.g. 

regional thickness measures, intrinsic tissue parameters, etc…).  

The automated nature of the methods described here, in contrast with existing manual or semi-

automated techniques, allows for their routine application in large-scale studies. Having access to this 

type of detailed morphometric information for large populations including various disorders as well as a 

spectrum of normal controls should facilitate the characterization of the anatomical signatures associated 

with specific disorders. Ultimately, this may provide a more accurate and sensitive tool for early 

diagnosis of brain disorders. 
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6 Appendix 

6.1 Labels for CMA cortical parcellation 

UN  Unknown 

AG   angular gyrus 

BFsbcmp basal forebrain 

CALC  intracalcarine cortex 

Cga  cingulate cortex, anterior part 

CGp  cingulate cortex, posterior part 

CN  cuneus 

CO  central operculum 

F1  superior frontal gyrus 

F2  middle frontal gyrus 

F3o  inferior frontal gyrus, pars opercularis 

F3t  inferior frontal gyrus, pars triangularis 

FMC frontomedial cortex 

FO  frontal operculum 

FOC  fronto-orbital cortex 
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FP  frontal pole 

H1  Heschl's gyrus 

INS  insula 

LG   lingual gyrus 

OF  occipital fusiform gyrus 

Oli  occipital lateral gyri, inferior part 

Ols  occipital lateral gyri, superior part 

OP  occipital pole 

PAC  paracingulate cortex 

PCN  precuneus 

Pha  parahippocampal gyrus, anterior part 

PHp  parahippocampal gyrus, posterior part 

PO  parietal operculum 

POG postcentral gyrus 

PP  planum polare 

PRG  precentral gyrus 

PT  planum temporale 

SC  subcallosal cortex 

SCLC supracalcarine cortex 

Sga  supramarginal gyrus, anterior part 

SGp  supramarginal gyrus, posterior part 

SMC supplementary motor cortex or juxtapositional lobule cortex 

SPL  superior parietal lobule 

T1a  superior temporal gyrus, anterior part 

T1p  superior temporal gyrus, posterior part 

T2a  middle temporal gyrus, anterior part 

T2p  middle temporal gyrus, posterior part 
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T3a  inferior temporal gyrus, anterior part 

T3p  inferior temporal gyrus, posterior part 

Tfa  temporal fusiform gyrus, anterior part 

TFp  temporal fusiform gyrus, posterior part 

TO2  middle temporal gyrus, temporo-occipital part 

TO3  inferior temporal gyrus, temporo-occipital part 

TOF  temporal fusiform gyrus, temporo-occipital part 

TP  temporal pole 

MW  medial wall 

6.2 Labels for surface-based parcellation 

Unknown 

Corpus_callosum 

G_and_S_Insula_ONLY_AVERAGE 

G_cingulate-Main_part 

G_frontal_inf-Opercular_part 

G_frontal_inf-Triangular_part 

G_frontal_superior 

G_insular_long 

G_occipital_inferior 

G_occipital_superior 

G_occipit-temp_med-Lingual_part 

G_orbital 

G_parietal_inferior-Angular_part 

G_parietal_superior 

G_precentral 

G_rectus 

G_subcentral 
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G_temp_sup-Lateral_aspect 

G_temp_sup-Planum_tempolale 

G_temporal_middle 

Lat_Fissure-ant_sgt-ramus_horizontal 

Lat_Fissure-post_sgt 

Pole_occipital 

S_calcarine 

S_central_insula 

S_cingulate-Marginalis_part 

S_circular_insula_inferior 

S_collateral_transverse_ant 

S_frontal_inferior 

S_frontal_superior 

S_intermedius_primus-Jensen 

S_intraparietal-and_Parietal_transverse 

S_occipital_inferior 

S_occipital_superior_and_transversalis 

S_occipito-temporal_medial_and_S_Lingual 

S_orbital_medial-Or_olfactory 

S_paracentral 

S_pericallosal 

S_precentral-Inferior-part 

S_subcentral_ant 

S_suborbital 

S_supracingulate 

S_temporal_superior 

S_transverse_frontopolar 
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