
1

Cortical Surface-Based Analysis II: Inflation, Flattening,

and a Surface-Based Coordinate System.

Bruce Fischl

Martin I. Sereno

and

Anders M. Dale

Abstract -  The surface of the human cerebral cortex is a highly folded sheet with
the majority of its surface area buried inside folds. As such, it is a difficult domain for
computational as well as visualization purposes. We have therefore designed a set of
procedures, which are an extension of previous work (Dale and Sereno 1993), for
modifying the representation of the cortical surface to (i) inflate it so that activity buried
inside sulci may be visualized, (ii) cut and flatten an entire hemisphere, and (iii)
transform a hemisphere into a simple parameterizable surface such as a sphere for the
purpose of establishing a surface-based coordinate system.

1. Introduction.

Currently, the most widely used method of analyzing functional brain imaging data is the
projection of the functional data from a sequence of slices onto a standardized anatomical 3D
space. The most common of these procedures is based on the Talairach atlas ((Talairach and
Tournoux 1988), see e.g. (Collins, Neelin et al. 1994) for an automated procedure). While this
type of approach has certain advantages (ease of use, widespread acceptance, applicability to
subcortical structures), it also has significant drawbacks.

These drawbacks derive from the fact that the intrinsic topology of the cerebral cortex is
that of a highly folded and curved 2D sheet. Estimates of the amount of “buried” cortex range
from 60-70% (Zilles, Armstrong et al. 1988; Van Essen and Drury 1997) This implies that
distances measured in 3D space will have an average error in the range of 45-50% with respect to
the distance along the cortical sheet. In practice, errors can be much larger than this in cases
where two points lie on different banks of a sulcus or gyrus.

From a functional standpoint, nonhuman primate neocortex is composed of a mosaic of
visual, auditory, somatosensory, and motor areas, with visual areas alone occupying more than
half of the total cortical surface (Felleman and Van Essen 1991; Kaas and Krubitzer 1991; Sereno
and Allman 1991). The bulk of the remaining half is comprised of auditory, somatosensory,
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motor, and limbic areas, each occupying about 1/8 of the total neocortex (Morel and Kaas 1992;
Stepniewska, Preuss et al. 1993).

The majority of these areas are defined by their topographic maps of the sensory periphery
(e.g. retinotopic, tonotopic, somatotopic). Typically, the metric encoding the relationshop
between these maps and the sensory periphery which they represent is not known (see, (Schwartz
1977; Schwartz 1980) for a notable exception). However, the two dimensional nature of the maps
as well as their topographic arrangement strongly suggest that a two dimensional surface-based
metric is more appropriate for analyzing their functional properties than the more typically used
volume-based metrics.

The highly folded nature of the cortical surface also makes it difficult to view functional
activity in a meaningful way. The typical means of visualization of this type of data is the
projection of functional activation onto a set of orthogonal slices. This procedure is problematic
as regions of activity which are close together in the volume may be relatively far apart in terms of
the distance measured along the cortical surface.  In addition, the naturally two-dimensional
organization of cortical maps is largely obscured by the imposition of an external coordinate
system in the form of orthogonal slices.

For these reasons we have developed a unified procedure which begins with a previously
reconstructed cortex (Dale and Sereno 1993; Dale, Fischl et al. 1998) and modifies it in order to
achieve three separate but related goals:

1. The “inflation” of the cortical surface so that activity occurring inside sulci may be easily
visualized.

2. The flattening of an entire hemisphere so that the activity across the hemisphere may be seen
from a single view, and so that computational procedures which are not tractable on arbitrary
manifolds may be employed in the analyis of the cerebral cortex.

3. The “morphing” of a hemisphere into a surface, which maintains the topological structure1 of
the original surface, but has a natural (i.e. closed-form) coordinate system.

Each of these procedures is accomplished in a manner that preserves as much of the
topological and geometric structure of the original surface as possible. The methods described in
this paper are an extension of previously presented work (Dale and Sereno 1993) , and have been
routinely used in a wide variety of studies  (Sereno, Dale et al. 1995; Tootell, Reppas et al. 1995;
Sereno, Dale et al. 1996; Tootell, Dale et al. 1996; Tootell, Dale et al. 1996; Tootell, Mendola et
al. 1997).

                                               
1 1The term Topological structure is frequently used to refer to the border of a domain as opposed to its

global topology  (Mortenson 1997). For example, once an incision has been made in the cortical surface it is

topologically equivalent to a plane. Further incisions alter its topological structure, but not its topology (unless they

result in multiple disconnected components).
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2. Mapping of the cortical surface to parameterizable shapes.

Because of the varying intrinsic curvature of the cortical surface it is not possible to map it
onto other significantly smoother surfaces (such as planes or spheres) without introducing some
metric and/or topological distortion into the surface representations (Carmo 1976). A mapping
between two surfaces with no metric distortion is called an isometry. Finding such a mapping
from the sphere to the plane has been called the mapmaker’s problem, and was shown to be
impossible by Gauss in 1828 (Gauss 1828), as the surfaces in question have differing intrinsic (or
Gaussian) curvature. Nevertheless, for the representations to be useful for either visualization or
computational purposes, metric distortion must be minimized. Toward that end, we have
developed a general procedure for minimizing metric distortion in a variety of contexts, such as
surface inflation, flattening, as well as mapping to other parameterizable surfaces such as a sphere.

Constructing this type of mapping is a difficult task due to the complex and highly folded
nature of the original surface, which requires a fine-scale tessellation in order to capture its metric
and topological properties. One attractive means of flattening the surface is the method employed
by Schwartz and colleagues (Schwartz, Shaw et al. 1989; Wolfson and Schwartz 1989; Schwartz
1990) in which the matrix of distances of each vertex to all other vertices is constructed in order
to represent the metric properties of the original surface. The surface is then randomly projected
onto a plane, and unfolded in such a way as to minimize the mean-squared error between the
original distance matrix and that of the flattened surface. While this method is more than adequate
for flattening small patches of the cortical surface, such as primary visual cortex to which it was
originally applied, the computational requirements of the procedure in terms of both memory and
time become prohibitive as the patch size grows.

A different type of method was employed by Dale and Sereno (Dale and Sereno 1993),
and later by Carman (Carman, Drury et al. 1995) as well as Drury and colleagues ((Drury, Van
Essen et al. 1996; Van Essen and Drury 1997; Van Essen, Drury et al. 1998).  In this approach, a
variety of local forces are constructed in order to encourage the preservation of local area and
conformality (i.e. angle) while also forcing the surface to unfold onto a plane. These techniques
have been successfully applied to entire cortical hemispheres, but suffer from a number of
drawbacks. First, they require the use of terms such as a spring force in order to eliminate folds,
which results in surfaces that are not optimal with respect to the preservation of any metric
property. In addition, they treat the vertices on the borders of the flattened surface differently than
those in the interior, thus constraining the shape of the resulting surface. Finally, they preserve
local properties of the surface and therefore do not rule out large-scale distortions caused by
locally correlated errors, although the use of multi-resolution techniques addresses this concern to
some degree.

Part of the problem with applying the Schwartz method is that relatively long-range
distances must be accounted for in order to unfold patches of cortex which have been folded by
the projection process. They estimate that a procedure incorporating distance constraints on the
order of 1 cm suffices to unfold monkey V1 (Schwartz, Shaw et al. 1989). Unfortunately, the
distance required to smooth out a fold grows with the size of the surface (and the fold), quickly
requiring untenable memory usage.
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This problem occurs because distances are unoriented, and therefore mirror image
configurations represent local minima in the energy functional. To see this, imagine a piece of
paper, which is folded exactly along a string of vertices. If only nearest neighbor distances are
being preserved, this represents an optimal configuration with the same energy as the completely
unfolded state. The inclusion of neighborhoods which are small relative to the size of the entire
sheet will not aid the problem, as the majority of the nodes on the surface are then beyond the
neighborhood of the fold. This type of situation thus represents a local minimum, as moving
vertices along the fold will increase the metric error until the rest of the surface expands. In order
to cause the surface to unfold, a sufficient number of vertices must be included in the distance
matrix so that the decrease in error caused by removing the fold more than offsets the increase in
error of the region outside the fold, a solution that is not viable for as complex and large a surface
as an entire cortical hemisphere.

We therefore construct a means of encouraging the surface to unfold which satisfies three
criteria:

1) The final surface should be optimal with respect to minimizing metric distortion.

2) The borders of the cut surface should be treated no differently than the interior.

3) The resulting surface should have only minimal folding.

The first two criteria exclude the use of spring terms to “regularize” the mesh, which are
typically introduced in order to prevent folding. Instead, we construct an energy functional that
employs only a distance term for unfolded or positive regions of the surface, but applies an
additional term to folded or negative regions2 in order to cause the surface to unfold.

2.1. Minimizing Metric Distortions.

The term that minimizes metric distortions is constructed as follows. Consider a mesh of V
vertices distributed irregularly over a surface S embedded in a 3D Cartesian space. Denoting the
distance between the ith and jth vertices at time t by dt

ij, we construct a mean-squared energy
functional Jd:
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vertices on the initial surface, and N(i) is the set of vertices defined to be in the neighborhood of
vertex i. Taking the gradient of Jd with respect to the kth vertex results in

                                               
2 We use the notion of an oriented area by defining a consistent normal direction on the surface (positive z

in the plane, outward on a sphere). Any triangles in the tessellation in which the ordered cross-product of its legs is

antiparallel to the normal direction is then assigned a negative area.
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2.2. Unfolding using oriented area.

As noted previously, causing the surface to unfold using only a distance term is not
feasible for large surfaces. This is due to the fact that mirror-image configurations are not directly
penalized, resulting in folded states that are local minima of the energy functional. These local
minima are caused by the inherently unoriented nature of distances that do not explicitly
distinguish between folded and unfolded states. In order to resolve this problem, we therefore
seek an oriented metric property that discourages folds in the surface. The two obvious
candidates are conformality and areal terms. While both can be employed succesfully in this
context, the use of an angle term results in a gradient which is dependent on the square of the
inverse of the vertex spacing, and is therefore somewhat numerically unstable. In contrast, the use
of an oriented area results in a quadratic energy functional with a well-defined minimum.

In order to define the areal term of the energy functional we consider the ith triangle in the
surface tessellation depicted in Figure 1, with unit normal vector ni, and edges ai and bi

connecting the vertex xi to two of its neighbors (note that bold-faced symbols denote vector
quantities). The unit normal ni is given by the normalized cross product of the edges ai and bi,
while the area of the triangle is half the cross product of ai and bi dotted with the unit normal (i.e.
the triple scalar product). If the normal vector field is given a consistent orientation on the
surface3, then this becomes an oriented area, which may take on negative values indicating folds
in the surface.
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Figure 1 Metric properties of the triangular tessellation.

Given this description of the metric properties of the surface through the triangular
tessellation, we form an energy functional Ja which penalizes negative area in proportion to the
difference between the current area and the original area occupied by each triangle:

                                               
3 This is always possible except in pathological cases such as the Möbius strip which are said to be

nonorientable (Carmo 1976).
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where, as before, superscripts denote time, with 0 being the initial areal values, T refers to the
number of triangles in the tessellation, and the functional dependence of the Ais on the position of
the vertex and its neighbors has been suppressed for simplicity of notation.

In order to minimize Ja, we take the gradient with respect to the vertex positions xk:
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The partials of the change in the legs with respect to a change in the vertex position are dependent
on what position the vertex in question occupies in a given triangle:
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2.3. The complete energy functional.

The complete energy functional incorporating both distance and areal terms is given by

aadd JJJ λλ +=

where the λa and λd coefficients define the relative importance of unfolding versus the
minimization of metric distortions respectively. Initially, λa takes on values much larger than λd,
and gradually decreases over time as the surface successfully unfolds. One additional point to note
is that we smooth the gradients using iterative averaging during the numerical integration. This
allows entire regions which are compressed or expanded to move coherently in the appropriate
direction, and is similar to decimation followed by upsampling with interpolation. We allow each
scale (defined by the number of iterations in the averaging) to equilibrate before reducing the scale
and continuing. The actual minimization of J(x) is accomplished using gradient descent with line
minimization (Press, Teukolsky et al. 1994).

3. Surface Inflation.

The high degree of folding of the cortical surface makes it desirable  to inflate the
reconstructed surface for visualization purposes (Dale and Sereno 1993). This renders the interior
of sulci visible, as well as making the surface-based distance between regions more apparent to
visual inspection.  The purpose of the surface inflation is thus to provide a representation of the
cortical hemisphere that retains much of the shape and metric properties of the original surface, but
allows the visualization of functional activity occurring within sulci. For this purpose, we define an
energy function whose minimization results in the desired shape. This functional consists of two
terms, a spring force which smooths the surface, and the metric-preservation term described in
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section 2.1, which constrains the evolving surface to retain as much of the original metric
properties as possible:
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where N1 denotes the set of nearest neighbors of each vertex, and Jd is as defined in section 2.1.

We use Euler’s method with momentum to integrate Js until the surface has achieved a desired
smoothness as measured by the goodness-of-fit of the polyhedral approximation4.

    

Figure 2. Inflated representations of the three cortical surfaces (sulci are dark and gyri are light).

4. Flattening.

In order to flatten a cortical hemisphere with minimal distortion we make a number of
cuts on the medial aspect of the original surface - one in a region around the corpus callosum to
remove all subcortical structures, one down the fundus of the calcarine sulcus, and a set of equally
spaced radial cuts. We then project the resulting surface onto a plane whose normal is given by
the average surface normal of the cut surface. Once the projection has been accomplished, we
again allow the surface to unfold by minimizing the energy given in section 2.3, using equally
spaced randomly sampled distances in a 0.5 cm radius of each vertex as the neighborhood N(i).
The result of this precedure is shown in Figure 3, which depicts three flattened left hemispheres.

   

Figure 3. Three flattened left hemispheres (sulci are dark and gyri are light).

                                               
4 We integrate the inflation functional until the normalized average distance of the neighbors of each vertex

from its tangent plane is below a prespecified threshold.
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5. A surface-based coordinate system.

The specification of corresponding points on different cortical surfaces requires the
establishment of a uniform surface-based coordinate system. This is in contrast to volume-based
coordinate systems in which a point on the cortical surface in one volume will typically not lie on
the cortical surface of a different volume. In order to establish an inherently surface-based
coordinate system, we morph the reconstructed cortical surface onto a parameterizable surface, as
the parameterization then provides a natural coordinate system. The surface we choose for this
purpose is a sphere for a number of reasons. Primarily, the mapping of the cortical hemisphere
onto a sphere allows the preservation of the topological structure of the original surface (i.e. the
local connectivity). This is in contrast to the use of a flattened surface, which requires cuts in
order to lie flat with minimal distortion. These cuts change the topological structure of the
surface, resulting in points on opposite sides of a cut, which are close to each other on the original
cortical surface, becoming quite far apart on the final flattened representation. The choice of the
sphere also allows us to retain much of the computational attractiveness of the, allowing the
simple calculation of metric properties such as distances, areas and angles, properties that are
more difficult to compute on more complex surfaces such as ellipsoids.

The process of unfolding the cortical surface on a sphere is identical to the procedure
outlined in section 4, except that distances on the sphere are no longer Euclidean, but rather must
be computed using the geodesics of the sphere. In addition, the lack of freedom to modify the
shape of the unfolding surface necessitates the use of longer range distances than in the case of
the flattening. Typically we minimize the metric distortion of a randomly spaced sampling of
distances in a 1 cm radius of each vertex. Figure 4 illustrates the result of applying this procedure
to three cortical hemispheres.

        

Figure 4. Lateral view of three left hemispheres after morphing.

6. Conclusion.

In this paper we have presented a unified set of procedures which transform the a
previously reconstructed cortical surface, and are routinely used in our lab. These transformations
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achieve two primary goals. First, they dramatically  improve the ability to visualize functional
activation taking place on the cortical surface. In addition, they allow two-dimensional analysis
techniques to be applied to the functional and structural properties of the cortical surface. The
mapping procedures we have presented have the advantage of being optimal with respect to a
well defined energy functional that measures the amount of metric distortion of the transformed
surface. In conjunction with segmentation methods (Dale and Sereno 1993; Atkins and
Mackiewich 1996; Dale, Fischl et al. 1998; Teo, Sapiro et al. 1998), these procedures allow the
routine use of surface-based representation and analysis for the first time.
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