652 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 4, APRIL 2006

Efficient Localization of Synchronous EEG Source
Activities Using a Modified RAP-MUSIC Algorithm
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Abstract—Synchronization across different brain regions is
suggested to be a possible mechanism for functional integration.
Noninvasive analysis of the synchronization among cortical areas
is possible if the electrical sources can be estimated by solving
the electroencephalography inverse problem. Among various
inverse algorithms, spatio-temporal dipole fitting methods such
as RAP-MUSIC and R-MUSIC have demonstrated superior
ability in the localization of a restricted number of independent
sources, and also have the ability to reliably reproduce temporal
waveforms. However, these algorithms experience difficulty in
reconstructing multiple correlated sources. Accurate reconstruc-
tion of correlated brain activities is critical in synchronization
analysis. In this study, we modified the well-known inverse algo-
rithm RAP-MUSIC to a multistage process which analyzes the
correlation of candidate sources and searches for independent
topographies (ITs) among precorrelated groups. Comparative
studies were carried out on both simulated data and clinical
seizure data. The results demonstrated superior performance with
the modified algorithm compared to the original RAP-MUSIC in
recovering synchronous sources and localizing the epileptiform
activity. The modified RAP-MUSIC algorithm, thus, has potential
in neurological applications involving significant synchronous
brain activities.

Index Terms—EEG, Inverse problem, RAP-MUSIC, synchro-
nization.

1. INTRODUCTION

XTENSIVE studies have suggested that synchronization

is a possible mechanism for neural integration and could
play a crucial role in brain function [1]-[4]. Synchronized
activities exist not only within local brain regions but also
across areas far apart in the brain [5]. To understand the brain
network, functional imaging techniques such as functional
magnetic resonance imaging (fMRI) and positron emission
tomography (PET) are widely used. However, synchrony
between associated brain areas is usually transient and may
emerge and disappear in a short time [6]. fMRI and PET are not
abletofully reveal this transient activity dueto their poor temporal
resolution. An alternative tool is electroencephalography (EEG),
which can provide a temporal resolution in milliseconds.
Currently most synchronization studies are based on scalp
EEG. Because of volume conduction a single electrical source

Manuscript received January 26, 2005; revised August 5, 2005. This work
was supported in part by the National Science Foundation (NSF) under Grant
0112742. Asterisk indicates corresponding author:

H. Liu is with the School of Electrical Engineering and Computer Science,
Washington State University, Spokane, WA 99202 USA (e-mail: hesh-
engliu@yahoo.com).

*P. Schimpf is with the School of Electrical Engineering and Computer
Science, Washington State University, Spokane, WA 99202 USA (e-mail:
schimpf@wsu.edu).

Digital Object Identifier 10.1109/TBME.2006.870236

in the cortex may produce synchronized signals on several
scalp channels. Analyzing the synchrony of scalp EEG could,
thus, be misleading because the synchronized components
may come from the same source [7]. A way to improve
the spatial resolution of EEG is the inverse method, which
attempts to reconstruct brain sources from scalp measurements.
Solution of the EEG inverse problem benefits from a head
model which correctly reflects the relationship between neural
current sources and measurements. Both spherical head models
and, more recently, realistic-geometry head models have been
used. The disadvantage of EEG is that the signals from
multiple sources are mixed as they propagate through the
inhomogeneous tissues surrounding the brain. An alternative to
EEG is magnetoencephalography (MEG), which is less affected
by inhomogeneities and the high impedance of skull. However,
MEG is insensitive to deep or radially oriented sources. Since
EEG and MEG provide complementary information on the
sources, a better solution may be achieved by combining these
two measurements. The inverse algorithm will be discussed
in this paper is applicable to both EEG and MEG signals.
The EEG/MEG inverse problem is known to be ill-posed and
requires a priori assumptions regarding the source model
to achieve a unique solution. These assumptions are highly
application-specific. Many source models are possible, such
as a single dipole model, multidipole model and distributed
current source model. Various inverse methods have been
proposed based on different models. Reviews of these models
and methods can be found in [8], [9]. Among current inverse
algorithms, some can be classified as spatio-temporal methods.
Prominent examples are dipole fitting algorithms such as
R-MUSIC [10] and RAP-MUSIC [11]. They separate the
EEG signal into multiple components according to temporal
characteristics, and then localize the sources for each component.
These methods can recover independent or weakly correlated
sources very well. However, both methods have difficulty in
separating highly correlated sources and can, thus, produce
large localization errors when such sources are present.
Other algorithms use a spatial-only approach. These methods
process the EEG signals one time-sample at a time and
optimize the source distribution to fit the measurements at
the given time sample. Examples are weighted minimum
norm (WMN) [12], LORETA [13], [14], sLORETA [15],
and FOCUSS [16]. These spatial inverse methods are not
influenced by the temporal course of the sources and, thus, their
performance is not significantly degraded by source correlation.
However, by processing only a single time sample, such
methods usually have higher localization errors on independent
sources in the presence of noise. Spatial-only inverse methods
may also deform the source waves when continuous EEG
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recordings are processed. Low-resolution methods such as
WMN, LORETA, and sLORETA will mix the waveforms
of sources that fall within their wide point-spread functions.
High-resolution methods such as FOCUSS and LIl-norm
[17] usually produce discontinuous waveforms because of
their nonlinearity. Incorrect temporal waveforms will preclude
subsequent synchronization analysis.

In the human brain, interaction among brain sources can be
highly complex. Correlations at all levels may exist, including
perfectsynchronization. In therest of this paper, highly correlated
sources are referred to as synchronous sources, as in [10]. A
method which fails to handle synchronous sources will produce
incorrect source distributions, resulting in incorrect conclusions
regarding the interaction between different brain regions.

Efforts have been made to enable spatio-temporal methods to
process highly correlated sources. R-MUSIC and RAP-MUSIC
introduced the important concept of independent topographies
(ITs). Instead of representing dipoles individually, an IT is
comprised of one or more nonrotating dipoles with perfectly
correlated time courses. Because a multidipole IT is comprised
of multiple synchronous sources, the IT model provides the
potential forlocalizing synchronous sources. However, searching
for such sources is far from straightforward. These algorithms
begin by first searching for a single-dipole IT to fit a specific
component of the signal. If the correlation between the signal
component and the best-fit single dipole IT falls below a preset
threshold, a multidimensional search for an IT containing
multiple synchronous dipoles is performed. There are two
problems that are not explicitly addressed by R-MUSIC and
RAP-MUSIC. 1) How to establish a correlation threshold for
scanning multisource ITs. In [10], the authors simply suggest
a correlation threshold of 95%. However, an appropriate
correlation threshold is highly dependent on the signal-to-noise
ratio (SNR), as shown in [18] and demonstrated further here.
2) How to deal with the factorial increasing computational
complexity when multiple synchronous sources are present.
The head model usually contains thousands of nodes that
are candidate source locations. Thus, even two synchronous
sources will incur an exhaustive search among over one
million possible combinations of these nodes. This complexity
can be mediated, to some extent, by initially searching over
a reduced solution as demonstrated in [10] and again in
[18], but this strategy cannot keep up with the factorial
complexity of multiple sources. It is also possible to search
for synchronous sources using nonlinear methods; however,
they usually find local optima rather than the global solution.
A global search for more than two synchronous sources is
practically impossible though synchrony over multiple brain
regions is common.

This paper introduces a modified version of RAP-MUSIC
that attempts to integrate the spatio-temporal and spatial-only
approaches in a way that preserves both of their advantages.
Special attention will be paid to highly correlated sources.
For simplicity of presentation, this modified RAP-MUSIC
algorithm is referred to as precorrelated and orthogonally
projected MUSIC (POP-MUSIC).!

ICode to implement POP-MUSIC is available upon request to the
corresponding author.

II. METHOD
A. IT Source Model and RAP-MUSIC

For a generalized problem with p current dipoles in the brain
and m electrodes on the scalp, the spatio-temporal form of the
EEG forward problem can be expressed as

v(ry,t1) v(ry,ty) G(ry, 1) G(ry,1,)
w(tmit) - o(Emtn) | [ G L) - Glom,1,)
mxn mX3p
si(t1) -+ si(tn)
x| : M
Sp(tl) T Sp(tn)
3pXn

where v(r;, ¢;) represents the EEG measurement on the ith elec-
trode at the time ¢;, G(r;,1;) is a 1 x 3 vector describing the
forward field generated by the jth dipole at the 7th electrode lo-
cation, and s;(¢;) is 3 x 1 a vector describing the ith dipole
moment at time Z;. The above equation can be written in matrix
notation as

v(t) =

mxXn

G S(1). @
mX3p 3pxn

The original MUSIC algorithm assumes the rank of the signal
subspace is equal to the number of dipoles and each of these
dipoles has a linearly independent time course. This definition of
source arbitrarily precludes synchronous sources in the brain. To
enable the search for synchronous sources the IT source model
was proposed in R-MUSIC. In this model, a “source” is not rep-
resented by a single dipole but an IT, which is comprised of
one or more nonrotating dipoles with perfectly correlated time
courses. Each IT has a time course that is independent of other
ITs, so the rank of the signal subspace is equal to the number of
ITs rather than the number of dipoles. Within this framework,
the p dipoles in (1) can be grouped into r subsets, each repre-
senting an IT. Therefore, (2) can be rewritten as

v(t) = [G(py) G(p,)]S(t) = G(p)S(t) ()
mXn mxXr rXn
where p; = [lgi), e lgi)] represents the location parameters of

p; dipoles contained in the 4th IT.
If the dipole orientations are factored out from the moments
then (3) can be reduced to [10]

mq(t)
v(t) =G(p)S(t) = G(p)[w wl|
m,.(t)
m1(t)
= [a(py,m1) a(p,up)] |
m,(t)
=A(p,u)M(t) “)
where u = [uy, - - -, u,] are the unit-norm generalized orienta-

tion vectors for the r ITs. The orientation vectors are generalized
to include the orientation of all dipoles in an IT.
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When additive noise is considered, (4) become
v(t) = AM(t) + N(¢) 5)

If the noise is assumed to be white with zero mean, then the
autocorrelation of the measurement is

Ry = E{vwwT} = A (E{MMT}) AT £ 0o’ (6)

where E{-} is the expectation operator, o2 is the variance of the
noise and I is the identity matrix. The autocorrelation matrix
Ry can be partitioned into signal subspace and noise subspace
as follows:

A + 710'31 0 T
0 nogI] (@5, ]

=, (A + naz) o'+ o, (710?,) o7
=0\, 07 + A DT (7

Ry =[0,.0.] |

where A are r signal eigenvalues, A; contains r estimated
signal eigenvalues, and A, is a matrix of (m — ) noise-only
eigenvalues. The signal subspace is defined as span (®y), and
the orthogonal or noise-only subspace is defined as span (®,).
The columns of A (p, u) should span the same subspace as ®.
By projecting ITs which contain one or multiple columns of
A(p,u) into the signal subspace, the best fitting ITs can be
determined. This forms the basis of signal subspace methods
for parameter estimation of the IT model.

RAP-MUSIC is an algorithm that also recursively searches
the ITs according to subspace correlation. The main feature of
RAP-MUSIC is that once an IT is found its component is re-
moved from the signal; thus, the following search is performed
in the orthogonal subspace of the already-found ITs. The mod-
ified subspaces are formed by applying an orthogonal projector
to both the measured field and source subspace.

For each iteration, R-MUSIC and RAP-MUSIC first scan for
single dipole ITs. If no single dipole is sufficiently correlated to
the modified signal subspace, then ITs consisting of two syn-
chronous dipoles are scanned, and so forth. The original de-
scription of R-MUSIC suggested a fixed correlation threshold
of 0.95 for multisource ITs. In our previous study, it was found
this threshold is applicable only for a restricted range of SNR
[18]. An appropriate correlation threshold is highly dependent
on both the SNR and the configuration of synchronous and in-
dependent sources. A theoretical relationship between the ex-
pected model correlation and the SNR may be derived from the
standard statistical interpretation of the coefficient of determi-
nation, as follows:

e lGSIP _ jGs|P sNe?

= =
IGS+n|* [GS|?+[n]> SNR*+1

SNR?
cc = Q—eSt 8)
SNR_, +1

where SNR.s; is based on estimates of the signal norm and noise
norm. Equation (8) indicates that when SNR is low, a lower
correlation threshold may be required.

However, in practice, estimating the SNR is not straightfor-
ward; hence, it is difficult to decide on a threshold. Furthermore,

the best threshold also depends on the source configuration,
which is, of course, unknown in most applications. When the
threshold is too low, R-MUSIC and RAP-MUSIC will fail to
identify synchronous sources; instead a single independent
source will be found somewhere between the synchronous
sources. When the threshold is too high, independent sources
will be rejected and spurious synchronous sources will appear.

B. POP-MUSIC

To improve the reconstruction of synchronous sources, we
propose to integrate RAP-MUSIC with the spatial-only inverse
algorithm WMN. Since the wide point spread function of WMN
will cause overlap of sources, we first reduce the candidate
source space. With a reduced source space, the inverse problem
becomes less underdetermined,and, thus, the inverse solution
can be more robust to noise. The method of reducing source
space is described as follows.

Suppose the rank of the estimated signal subspace is r. RAP-
MUSIC will then iteratively search for r ITs. After each IT is
found, RAP-MUSIC removes the signal component associated
with this IT by applying an orthogonal projector I to both
the measured field and present source subspaces and continues
searching in the projected space. For the Ith iteration the pro-
jector I is defined as

-1
I+ = (I _ A, (A?Ai) A,L.T) )
where A; represents the IT model that has been found by pre-
vious iterations.

We can denote the th independent component of the signal
as Xz. If the correlation between the ¢th IT and Xz is perfect, i.e.
unity, then II;-X4 = 0. This means that in the projected space,
the signal component X7 has been removed. RAP-MUSIC will
stop searching when 7 ITs are found. It is assumed that these
r ITs can represent the signal, so searching for more ITs will
merely fit additional sources to noise. This is true only if the r
ITs can precisely fit the signal, i.e., in each iteration ¢, I, Xi =
0 holds.

RAP-MUSIC scans for single dipoles first, so when syn-
chronous sources are present, a single independent source
is first found as the global maxima. A search for multiple
synchronous sources is initiated only if the correlation of this
source is lower than some threshold. If an independent source
is mistakenly found in place of multiple synchronous sources,
ie., Ai is not composed of the true sources responsible for Xz,
then T1;-Xi # 0. This means the signal component Xi is not
completely removed by projecting the signal subspace to 1T
and there will be some unexplained “residual” of X3 in the
transformed signal space.

Thus, if the searching process is continued after r ITs are
found, RAP-MUSIC will locate sources that are partially associ-
ated with noise and partially associated with the residual signal
components IT;-X4. Such residual signal components are likely
to be localized at the true positions of synchronous sources as
these positions are highly correlated to the residual.

Based on this reasoning, we modified the RAP-MUSIC
process to search for & single-dipole ITs, where k is a number
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considerably larger than r. In our study, we set k to the full rank
of the measurements, including noise components. Therefore,
among these k single dipole ITs, some are associated with real
independent sources; some are associated with synchronous
sources, and others are associated with noise. These k locations
are a small portion of the source space in the whole head volume
but are likely to contain the true independent and synchronous
source locations when the number of these sources is less
than k. In order to increase the possibility of retaining all true
source locations in the search space, we expand the candidate
source space by including the neighboring nodes of the k&
locations described above. This inclusion of neighboring nodes
ensures that the inverse problem remains underdetermined. The
modified source space, thus, has ¢ sources (¢ > m/3), where
m is the number of EEG sensors. The validity of this method
of reducing source space was tested by statistical studies on
simulated data. The details of the simulated study are reported
in the “Results” section of this paper.

Even in this reduced source space, exhaustive searching for
synchronous sources using RAP-MUSIC is difficult. Suppose
the source space has been reduced from several thousand to 200,
exhaustive searching for four synchronous sources still involves
millions of combinations. Here we introduce an alternative way
to recover synchronous sources to avoid this multidimensional
searching.

We employ the WMN method over the reduced candidate
source space to roughly estimate the source locations and wave-
forms. As stated above, spatial-only methods such as WMN are
not sensitive to source correlation and, thus, the synchrony be-
tween sources can be reflected to some degree in the recon-
structed waveforms. A correlation analysis is then performed on
the reconstructed sources. The sources are first sorted according
to their power. For a given source S, , we search for the N largest
sources whose correlations with .S, exceed a threshold. These N
sources and the source S, are then saved as a “correlated group.”
Here, we encounter a threshold problem as in RAP-MUSIC.
This threshold states how large a correlation is required if a
source is considered to be synchronized to S, . It should be noted
that this correlation threshold is distinctly different from that in
RAP-MUSIC. First, the correlation here is not “subspace cor-
relation” but correlation coefficient between two waveforms.
Second, this correlation threshold plays a different role than the
correlation threshold in RAP-MUSIC. This threshold decides
“which sources are possible synchronous companions to S,”
rather than “do we need any additional synchronous sources in
order to adequately explain the current subspace signal com-
ponent.” In other words, our threshold only affects the selec-
tion of a grouping of source sites, but does not trigger a mul-
tidimensional search. In this algorithm, less significant sources
are excluded by sorting the possible synchronous companions
of S, by their power. Because of this, it is safe to set a con-
servatively low threshold in order to favor the detection of syn-
chronous companions. This is a strategy that would not work
for RAP-MUSIC. We, therefore, gradually reduce the threshold
until N companions are found in each group, where N is a pa-
rameter selected by the user.

The source space is, thus, divided into several “correlated
groups.” Each one of the ¢ “correlated groups” is then taken as a
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Fig. 1. Topography of the spherical head model. The upper-left slice is the
lowest part of the brain; the lower-right slice is the topmost part of the brain.
The dark part is the solution space of the inverse problem.

candidate IT. The RAP-MUSIC algorithm is then applied again
to search for r ITs from among these predetermined groups.
This means that when a dipole is scanned, its correlated com-
panions are automatically included. On the other hand, because
a “correlated group” contains multiple sources, some spurious
sources may appear in the final result. Fortunately, the spu-
rious sources are usually weak compared to the true sources.
Based on the model parameters found by RAP-MUSIC, the
waveform of the sources can be estimated using various opti-
mization standards, such as least-squares (as in R-MUSIC and
RAP-MUSIC), WMN, or other methods. In our study, we have
used least square.

In summary, the POP-MUSIC algorithm can be stated as fol-
lows.

1) Iteratively search for k& single-source ITs using
RAP-MUSIC, where k is the rank of measurement.
Find the neighbors of these & source locations.

2) Reduce the source space to the source set found by Step
1), including the neighbors. Estimate the source waveform
for each source in this space by applying WMN at each
time sample.

3) For each source, find the N largest correlated compan-
ions, thus forming a collection of “correlated groups,” ex-
cluding nearest neighbors.

4) Perform RAP-MUSIC to find 7 ITs from these correlated
groups.

5) Calculate the inverse using the model parameters derived
in Step 4).

III. RESULTS

We evaluated the performance of this POP-MUSIC algorithm
using both simulated data and clinical data. For the simulated
data, we employed a three-shell spherical head model [19] reg-
istered to the Talairach human brain atlas [20]. The solution
space was restricted to cortical gray matter and hippocampus,
consisting of 2394 nodes at a 7 x 7 x 7 mm spatial resolu-
tion. Fig. 1 shows the solution space (dark area) along 17 axial
slices through the brain. The measurement space consisted of
127 electrodes on the scalp. We employed this spherical head
model in our simulations because this model has been widely
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Fig. 2. Realistic-geometry head model and the coordinate system, with
cutaway illustrating classified tissues.

used in other studies [14], [21], [22] so our results can be com-
pared with those. For the clinical data analysis we used a real-
istic-geometry head model based on classified magnetic reso-
nance images of a human head [23]. The lead-field matrix was
calculated using the finite element method [24]. This model and
the associated coordinate system are illustrated in Fig. 2. The
source space consisted of 3 035 locations sampled from the cor-
tical surface at a resolution of 4 X 4 x 4.25 mm. Our clinical
data used a 21-channel EEG, so the lead-field matrix had a di-
mension of 21 x 9105.

A. Simulation Study

A statistical study was first conducted to verify our method
of trimming the source space. We simulated 7 dipole sources on
randomly selected locations both in the realistic and the spher-
ical head model. Among these 7 dipoles, 3 were independent
and the other 4 were synchronous. The candidate source space
was then searched as described in Section II-B. The simula-
tion was repeated 100 times. Our statistical results showed that
in the realistic head model the source space was reduced from
3035 voxels to 218 voxels on average. In the spherical model,
the source space was reduced from 2394 voxels to 257 voxels.
Within the reduced source space, all of the independent sources
and 69% of the synchronous sources were faithfully retained
for the realistic head model, while all independent sources and
77% of the synchronous sources were retained for the spherical
model. For the lost synchronous sources, their closest neighbors
within the reduced source space had an average distance of 6.3
mm (realistic model) and 17.4 mm (spherical model) from the
true locations, which are both about 2 grid positions in the sam-
pled source spaces. This result shows that our method can effi-
ciently reduce the sources space while retaining the voxels that
are associated with the true sources.

In order to compare the performance of POP-MUSIC and
RAP-MUSIC in localizing synchronous sources, we began with

50

100

150

Fig. 3. Reconstruction of two synchronous sources. (a) The simulated
source configuration; (b) solution of RAP-MUSIC algorithm; (c) solution of
POP-MUSIC algorithm.

some simple synchronous source configurations. Two 100%
correlated sources with random orientations were placed in the
10th slice of our spherical head model. One source was located
in the left occipital area and the other in the right occipito-tem-
poral area, as shown in Fig. 3(a). Here, the activities of the
sources are superimposed on the MR images. The power of the
source is illustrated using a grey scale where dark is maximum
and light is minimum. Note that in order to show single dipole
sources more clearly on the MR images, we have drawn a circle
at each dipole location so that a source can appear bigger on
the image. For simplicity, a sinusoidal waveform of 10 Hz was
taken as the source waveform to emulate alpha activity in these
areas. The magnitude of the left source is 0.7 that of the right
sources. The simulated source waves were 2 s in length with a
sampling frequency of 100 Hz.

The simulated measurement was acquired through forward
calculation using the spherical head model discussed above.
White noise was then added to the simulated measurement to
produce an SNR of 15 db. The SNR was defined as

SNR = 20log; (M) (10)

F(e)
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Fig. 4. Localization errors for one independent and two synchronous sources
at different noise levels. The sources are randomly placed and the distance
between two synchronous sources is fixed to 80 mm. The two curves on the
top are produced by RAP-MUSIC using two different threshold strategies. The
curve on the bottom is produced by POP-MUSIC.

where F'(Vexact) s the Frobenius norm of the simulated noise-
free observations, and F'(e) is the Frobenius norm of the added
noise e, which was independent and identically distributed on
each channel.

We first employed RAP-MUSIC with a fixed threshold of
0.95 as suggested in [10]. RAP-MUSIC ended the search with
a single dipole which is located approximately in the middle of
the two simulated sources but in the adjacent slice [Fig. 3(b)].
This single dipole IT had a correlation of 0.9971 with the esti-
mated signal subspace. This result shows that a fixed threshold
of 0.95 is insufficient for recovering the synchronous sources
in this head model. We next applied POP-MUSIC to the same
data with a correlated group size of N = 4, and a correlation
threshold of 0.8. POP-MUSIC reconstructed three synchronous
sources as shown in Fig. 3(c). Two sources were located in the
correct slice with very small localization error. The third source
was in the adjacent slice but still very close to the original source
location. The waveforms of these 3 sources were all highly cor-
related to the simulated sinusoid wave with correlation coef-
ficients larger than 0.99. This result shows that POP-MUSIC
is able to reflect the synchrony between these two brain areas,
though some spurious nearby sources may occur.

In order to gain some quantitative information about the per-
formance of these two algorithms, the following statistical study
was conducted. We placed one independent source and two syn-
chronous sources with random orientations at randomly selected
locations in the head model. The distance between two syn-
chronous sources was fixed at 80 mm. White noise was then
added to the simulated measurements. We evaluated these two
algorithms at different noise levels by increasing the SNR from
0 to 30 dB in 5-dB increments. For each SNR, 100 random-
ized source configurations were generated and the inverse cal-
culations were performed by RAP-MUSIC and POP-MUSIC
respectively. Here, we tried two different threshold strategies
for RAP-MUSIC. First the correlation threshold was set to 0.95
as proposed in [10], and then an SNR related threshold was
used [18]. The parameters for POP-MUSIC were the same as

described in the previous simulation. Fig. 4 shows the mean
value of localization errors for these two algorithms. Vertical
bars indicate the 95% confidence interval on the mean. In this
study, localization error is defined as the average distance be-
tween the simulated and reconstructed source in the best of
the possible two-way matches between actual and reconstructed
sources. In cases where RAP-MUSIC reconstructed two syn-
chronous sources as a single source, we defined the localization
error as the average distance from the reconstructed source to
each of the two actual sources. This did not occur with POP-
MUSIC, because it always reconstructs more than the actual
number of sources. It should be noted that this definition of lo-
calization error does not capture the effect of spurious sources
that may be produced by POP-MUSIC.

Though the adaptive threshold strategy slightly improves the
localization ability of RAP-MUSIC, it still has large localization
error, especially when SNR is low, because the search for two
synchronous sources often ends up with a single source. Com-
pared to RAP-MUSIC, POP-MUSIC has better performance in
recovering the simulated sources. When the SNR is 15 db, the
average localization error is about 14.2 mm, which is slightly
more than 2 grid points.

In the following study, we simulated six sources in the brain.
The locations of these sources are displayed in Fig. 5(a). Among
them one source in the frontal lobe has a temporal waveform os-
cillating at 15 Hz (sourcel); the other five sources in the occip-
ital and temporal lobes have completely synchronous activities
at 9 Hz (source2-source6). These six sources have same mag-
nitude. White noise was added to the simulated measurement
to achieve an SNR of 20 dB. We first applied RAP-MUSIC
using the fixed correlation threshold of 0.95. It correctly lo-
cated the independent source (sourcel) with a subspace corre-
lation of 0.9983, but the synchronous sources were not fully re-
covered and only a single source was found near source6 with
a very high subspace correlation of 0.9901. The reconstructed
sources are shown in Fig. 5(b). In order to enable a search for the
synchronous sources, we increased the correlation threshold to
0.9950. Two synchronous sources (source6 and source3) were
then found with relatively small localization errors [Fig. 5(c)].
This two-source IT had a correlation of 0.9964 with the signal
subspace. This means that if we want to obtain more than two
synchronous sources, a threshold larger than 0.9964 would be
required.

We next applied POP-MUSIC to this simulated data with a
correlated group size of N = 10, and a correlation threshold
of 0.8. Fig. 5(d) shows the source locations scanned by POP-
MUSIC. Although this source image is not exactly the same as
Fig. 5(a), all of the simulated sources were recovered with rather
small localization error. Note again that some small spurious
sources have appeared because POP-MUSIC combines multiple
synchronous sources to make an IT. However, these spurious
sources are very weak, or are close to the real source. This shows
that POP-MUSIC is able to recover complex source configura-
tions containing multiple independent and synchronous sources.

B. Localization of Epileptiform Activity

In this section, we employ RAP-MUSIC and POP-MUSIC to
localize epileptiform activity. A seizure focus is a group of neu-
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(d

Fig. 5. Reconstruction of complex source configurations. (a) The simulated
source locations. Sourcel is independent to the other 5 sources, those
are completely synchronous. (b) Reconstructed source configuration by
RAP-MUSIC with a correlation threshold of 0.95 (c) Reconstructed source
configuration by RAP-MUSIC with a threshold of 0.995 (d) The sources
reconstructed by POP-MUSIC.

rons that trigger the abnormal discharge of the brain and cause
the seizure. Localization of the foci is very important in the sur-
gical treatment of epilepsy. In this study, we analyzed the clinical
EEG data of an epileptic patient suffering from frontal lobe par-
tial epilepsy. Informed consent was obtained from the patient. A
21-channel scalp EEG was acquired using the extended 1020 in-
ternational layout, digitized at 256 Hz and bandpass filtered at
0.5-40 Hz. We applied the realistic geometry head model de-
scribed above to this data. It should be noted that this realistic
head model was not based on the head of the patient.

Thefoci were firstdetermined by aphysician based on subdural
EEG recordings. Intracerebral electrodes with multiple contacts
were implanted in the frontal and adjacent lobes, where the loca-
tion of epileptogenic foci were suspected. One subdural grid with
8 % 4 contacts and four subdural strips with 8 contacts were used.
The post-implantation location of the electrodes can be seen in
the X-Ray image (Fig. 6). The locations of the foci determined by
the physician are shown in Fig. 6 as white crosses. The frequency
of seizure has been substantially reduced since the surgery.

Fig. 6. X-ray image of the intracerebral electrodes. The white crosses indicate
the locations of epileptic foci.

In an attempt to localize the seizure foci using scalp EEG,
a 0.5-s data segment containing an interictal spike and wave
complex was inverted. This complex wave appeared 10 s prior
to seizure onset. Epileptic seizures are suggested to be caused
by hyper-synchronization of the neurons so significant synchro-
nization may exist during the generation and propagation of the
epileptiform waves. RAP-MUSIC was first applied to this 0.5-s
data with the reconstructed dipole locations (dark circles) su-
perimposed on the MR images in Fig. 7(a)—(d). There are 41
sagittal MR images associated with the head model but here we
show only the slices where sources are located. The z coordi-
nates (refer to Fig. 2) of the slices are also shown in these im-
ages. Among the four reconstructed sources, one source is close
to the midbrain [Fig. 7(a)] and the other three sources are all in
the right hemisphere. These sources do not agree with the foci
locations determined by the physician. This demonstrates that
when synchronous sources are not appropriately processed, the
reconstructed source configuration could be far from the truth.

POP-MUSIC was then applied to the same 0.5-s data seg-
ment. The correlated group size NV is set to 6 and the correlation
threshold was set to 0.85. Fig. 7(e)—(h) shows the reconstructed
source locations. The dipoles shown in Fig. 7(e)—(g) are in the
left frontal lobe and are close to the foci shown in Fig. 6. POP-
MUSIC also found a source in the deep structure of the cortex
near the corpus callosum and thalamus [Fig. 7(h)]. This source
may reflect the synchronization between cortex and thalamus
which is reported to play an important role in seizure propaga-
tion [25]. It should be noted that our experimental data consists
of only 21 EEG channels, and the accuracy of source localiza-
tion is usually questionable with so few sensors. In [26], Mosher
et al. determined the error bound of EEG source localization for
different sensor configurations. Their results show that when
the sensors are as few as 21, the average RMS lower bound
can be several centimeters. This may explain why RAP-MUSIC
produces inconsistent results on these data. However, this lim-
ited preliminary study provides some qualitative evidence that
POP-MUSIC is applicable to real (as opposed to simulated)
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Fig. 7.

()

69)

Seizure sources reconstructed by RAP-MUSIC are shown in (a)—(d). Most of them are located in the right hemisphere and are inconsistent with the true

foci locations. Sources reconstructed by POP-MUSIC are shown in (e)—(g). They are close to the true foci locations.

data, and may have some advantage over RAP-MUSIC in situ-
ations where substantial synchronous activity can be expected.

IV. DIScuSSION

As synchrony is an important mechanism in brain func-
tioning, an inverse method that can recover the highly corre-
lated activity is desirable. In this paper, we present a method
which takes advantage of the spatio-temporal source model
employed by R-MUSIC and RAP-MUSIC, but avoids the
exhaustive searching for synchronous sources among numerous
possible combinations of dipoles. This algorithm combines
spatial-only and spatio-temporal approaches in a hybrid way.
Recent development in brain mapping techniques has proven
the efficiency of such combining strategies. In [27], Dale et
al. proposed an approach which employs the solution of the
MUSIC algorithm as a weighting matrix in the minimum
norm reconstruction. We also have implemented a combining
strategy in our recently developed algorithm SSLOFO [22].
Here, our hybrid algorithm focuses on the highly correlated
activities in the brain. For an EEG data segment, RAP-MUSIC
can robustly reveal independent sources and reconstruct the
source waveforms, while the spatial-only method WMN is able
to reflect the correlated activities among brain regions. Our
effort is to seek a combination of these two methods in a way
that preserves the desirable features of each.

We reduce the smoothing effect of WMN by first trimming
the candidate source space. The source waveforms recon-
structed by WMN are then analyzed and correlated sources
are grouped together. Note that when the data contains noise,
the technique of regularization should be applied in the WMN
algorithm. We employed Tikhonov-Phillips regularization
[28] in our study. Other low-resolution methods based on the

minimum norm algorithm are possible alternatives to WMN.
Algorithms such as LORETA and sLORETA can also roughly
reveal the energy distribution but usually produce smoother
maps. In a smooth reconstruction, the sources will appear to
be overly correlated, so the correlation threshold for source
grouping may need to be adjusted in that case. It should be
pointed out that this correlation threshold is also related to
SNR. However, this threshold can be underestimated because
its only function is to exclude the most asynchronous sources.
The correlated sources are sorted by power and subjected to
another RAP-MUSIC scan.

A parameter that should be emphasized is N, the number of
synchronous companions in each group. This number indicates
how many synchronous sources are included in a group and is
application-specific. A large group may produce some spurious
sources and a small group may cause loss of some synchronous
sources. However, a larger N is usually safer because although
N synchronous sources are included, some of their final ener-
gies will be small. We repeated the simulation in Fig. 3 using dif-
ferent choices of V. The sources reconstructed by POP-MUSIC
are shown in Fig. 8. It can be seen that an increasing N may re-
sult in more spurious sources. However, when IV increases from
8 to 11, there is no significant change in the number of spurious
sources because the number of the synchronous companions in a
group is also limited by the correlation threshold. An automated
strategy for determining N may be to start small and iteratively
apply POP-MUSIC until the residual signal falls below an esti-
mate of the noise. We have not yet investigated this strategy.

POP-MUSIC recovers synchronous sources with the price of
producing some small spurious sources synchronized to inde-
pendent sources. Theoretically, it is possible to employ a very
high threshold to enable the search for multiple synchronous
sources using RAP-MUSIC. Such a strategy will reject inde-
pendent sources and will also produce spurious synchronous
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sources. However, the resulting multidimensional search is im-
practical and a suitable threshold is still not easy to choose.
Note that because of the ill-posed nature of the inverse problem,
spurious sources are unavoidable in most imaging inverse algo-
rithms. By trimming the candidate solution space, POP-MUSIC
has greatly reduced the influence of spurious sources.

It should be emphasized that the inverse problem has no
unique solution and every algorithm has its own appropriate ap-
plication. When synchronous activity may not be significant or
spurious sources are to be avoided, methods such as R-MUSIC
and RAP-MUSIC may be favorable. When correlated activities
are significant and the interaction among different brain regions
are to be investigated, POP-MUSIC may be favorable.

V. CONCLUSION

Simulated data and experimental data have been employed to
test the performance of POP-MUSIC. Results on simulated data
demonstrated that POP-MUSIC has some potential advantages
in handling synchronous sources. When applied to the epileptic
scalp EEG, POP-MUSIC localized sources which are close to
the true foci as determined by a physician from implanted elec-
trodes, and revealed some activity in the deep brain structure that
may participate in a thalamo-cortical circuit. These preliminary
studies indicate POP-MUSIC has potential in neural synchrony
analysis of brain function.

50 100150

Reconstruction of two synchronous sources with different choices of N.

50 100150 50 100150
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