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Abstract—This paper presents a new algorithm called Stan-
dardized Shrinking LORETA-FOCUSS (SSLOFO) for solving
the electroencephalogram (EEG) inverse problem. Multiple tech-
niques are combined in a single procedure to robustly reconstruct
the underlying source distribution with high spatial resolution.
This algorithm uses a recursive process which takes the smooth
estimate of sLORETA as initialization and then employs the
re-weighted minimum norm introduced by FOCUSS. An impor-
tant technique called standardization is involved in the recursive
process to enhance the localization ability. The algorithm is
further improved by automatically adjusting the source space
according to the estimate of the previous step, and by the inclusion
of temporal information. Simulation studies are carried out on
both spherical and realistic head models. The algorithm achieves
very good localization ability on noise-free data. It is capable of
recovering complex source configurations with arbitrary shapes
and can produce high quality images of extended source distribu-
tions. We also characterized the performance with noisy data in
a realistic head model. An important feature of this algorithm is
that the temporal waveforms are clearly reconstructed, even for
closely spaced sources. This provides a convenient way to estimate
neural dynamics directly from the cortical sources.

Index Terms—EEG, inverse problem, spatio-temporal analysis.

I. INTRODUCTION

AS a noninvasive brain imaging technique, the electroen-
cephalogram (EEG) can directly reflect neuronal activity

with high temporal resolution but poor spatial resolution. In
order to obtain more detailed spatial information, a mathe-
matical procedure referred to as the “inverse problem” can be
applied to estimate the underlying cortical sources. A popular
approach to address the inverse problem is dipole source lo-
calization, which assumes one or multiple current dipoles to
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represent the electric sources, and attempts to determine the
locations, magnitudes, and perhaps the orientation of these
dipoles [1]–[5]. The use of a few equivalent dipole sources
is considered to be appropriate in modeling epileptic foci or
other very focal activities. However, most dipole methods re-
quire correct estimation of the number of sources [6], [7].
In recent years, another approach termed distributed source
model has been widely studied [8]–[10]. Distributed source
models do not limit the number of sources, nor do they nec-
essarily restrict the sources to be dipolar. This approach can
easily take advantage of anatomical or physiological informa-
tion provided by other imaging modalities such as functional
magnetic resonance imaging [11].

Distributed source models make a determination of source
activity at every possible location. This leads to a highly under-
determined and ill-posed problem with multiple solutions. A
cost function is generally defined in order to choose a particular
solution, and both linear and nonlinear optimization methods
have been used to find the minimum of that cost function.
Different cost functions may choose different solutions, so
the most appropriate cost function is application-specific. A
thorough analysis of the theoretic basis of various inverse
algorithms has been given by Mosher et al. [12]. Among these
approaches, weighted minimum norm (WMN) methods have
proven to give promising results [13]. One well-known WMN
method is the low-resolution electromagnetic tomography
(LORETA) algorithm [8], [9]. This algorithm introduces a
Laplacian operator into the weighting matrix to obtain a “neu-
rophysiologically smooth solution.” Recently, Pascual-Marqui
developed a new algorithm termed standardized LORETA
[14]. Although sLORETA sounds like an updated version of
LORETA, the basic idea is quite different from that of ap-
plying a spatial smoothing operator, as in LORETA. Instead,
sLORETA uses the resolution matrix to normalize a coarse
WMN estimation, and can thereby correctly reconstruct single
sources on noise-free data. Details of this algorithm will be cov-
ered in the Section II of this paper. Nevertheless, both LORETA
and sLORETA generate source distributions with low spatial
resolution. Although it is possible to correctly localize sources
by finding well separated maxima in the image, these low-res-
olution approaches can exhibit poor performance in recovering
multiple sources when the point-spread functions (PSF’s) of
the sources overlap. When measurements are contaminated
by noise, the inverse procedure must employ a regularization
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technique to avoid unstable solutions due to the ill-posed nature
of the EEG inverse. Regularization tends to increase the spatial
blurring of LORETA and sLORETA solutions. Specialized
cost functions can be defined to improve the spatial resolution.
Some studies replace the L2-norm of the WMN methods by the
L1-norm [10]. A hybrid approach which incorporates L1-norm
with L2-norm has also been introduced by Uutela et al. [15].
However, minimizing the L1-norm generally requires much
more computational effort than minimizing the L2-norm.

One promising high-resolution algorithm is the focal under-
determined system solver (FOCUSS) [16], [17]. This algorithm
is a WMN method that makes recursive adjustments to the
weighting matrix until most elements of the solution are close
to zero. It has been proven to converge to a sparse solution with
no more nonzero sources than the number of sensors. FOCUSS
is appropriate for recovering a few focal sources, but relies on
a robust initialization. In [16], an unbiased minimum norm was
used as the initial estimate for FOCUSS.

For a local optimizer, only a correct initialization can as-
sure that the algorithm starts in the correct basin of attraction.
We previously proposed a recursive algorithm called Shrinking
LORETA-FOCUSS, which uses a LORETA solution as the ini-
tialization for a recursive algorithm similar to FOCUSS [18],
[19]. Although Shrinking LORETA-FOCUSS has much better
performance compared to FOCUSS, neither of these methods
is able to accurately recover the time series of the source ac-
tivities. FOCUSS is basically a WMN method but it constructs
weighting matrix based on the source estimation and, thus, it
applies different weighting matrices at different time samples.
Shrinking LORETA-FOCUSS recursively reduces the source
space so it has different source spaces for different time sam-
ples. These nonlinear factors hamper the application of these
two algorithms in time series analysis.

There is now common agreement that electric activity in the
brain is organized in functional regions that synchronize in a
cooperative way. Thus, a spatio-temporal pattern analysis is
very desirable in brain research. Analysis of cortical sources
demands an inverse method with capabilities beyond source
distribution in the brain, but one that can also reveal the tem-
poral process of these sources. There exist different ways to
employ temporal information in an inverse calculation. Some
dipole methods assume the sources are spatially fixed during a
time segment and, thus, factor out the temporal information as
linear parameters and iteratively search for sources in the space
domain [4], [5]. Another widely used approach is the linearly
constrained minimum variance method which also assumes a
stationary source distribution in a given epoch and employs
the covariance of the measurements to form the optimization
criterion [20]. A recent work of Schmitt et al. suggested “tem-
poral smoothness” of the sources can be taken as an a priori
constraint in source localization [21]. This additional constraint
can be conveniently incorporated in the regularization of in-
verse problems.

In this paper, we present an algorithm that we refer to as
Standardized Shrinking LORETA-FOCUSS (SSLOFO). This
algorithm aims at localizing the sources with relatively high
spatial resolution and estimating the time series for each source.

A simple re-weighting strategy has been used to incorporate the
temporal information and retains the linearity of the algorithm.
SSLOFO is capable of recovering single or multiple sources
with their temporal waveforms and performs well with noisy
data. These advantages make this algorithm a promising tool for
human brain mapping. Simulation results in both spherical and
realistic head models are shown in Section III. For interested
readers, code to implement SSLOFO is available upon request
to the corresponding author.

II. METHDOLOGY

A. Standardized Loreta Algorithm

The distributed source localization problem can be stated as

(1)

where is an vector containing the electric potentials
from electrodes on the scalp, is a vector representing
current sources at locations within the brain volume, with
three orthogonal components per location, and is the lead-
field matrix representing the system transfer coefficients from
each source to each measuring point. A unique solution to (1)
can be achieved by zero-order Tikhonov-Philips regularization,
which uses the following cost function:

(2)

where is the regularization parameter determined by the dis-
crepancy principle or using the L-curve method [22]. The source
estimation is then derived as

(3)

where

(4)

Substituting (1) into (3) yields

(5)

where is the resolution matrix, defined as

(6)

The resolution matrix describes a mapping from the actual
source activity to the estimated activity. Ideally, would be
an identity matrix. In actuality, it cannot be identity because of
the ill-posed nature of the inverse problem. Note that the rank
of the resolution matrix cannot exceed the rank of the lead field
matrix and is ill-posed, therefore, is not invertible. The
basic idea of sLORETA is to normalize the estimation using a
block-by-block inverse of the resolution matrix , as follows:

(7)

where is a 3 1 vector containing the source estimate at the
th voxel (3) and is a 3 3 matrix containing the th diagonal

block of the resolution matrix. It has been shown that sLORETA
can correctly localize a single source [14]. Though the image
produced by sLORETA is blurred, the summit of the image is
correctly centered at the location of the source.
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B. Standardized FOCUSS Algorithm

FOCUSS is a high-resolution algorithm that recursively im-
plements the WMN method and converges to a sparse solution
[16], [17]. From the introduction of sLORETA we know that the
localization performance of a minimum norm method is highly
improved by the standardization process. Since each step of FO-
CUSS represents a WMN inverse, it is reasonable to apply stan-
dardization there as well. In this study, we investigated the effi-
cacy of such standardization. In FOCUSS, the solution to (1) is
achieved as follows:

(8)

where is the weighting matrix defined as

(9)

is a diagonal matrix which is recursively refined.
The solution to (8) at the th iteration is

(10)

where “ ” denotes the Moore-Penrose pseudo-inverse. At each
iteration, the matrix is updated based on the current density
estimated by the previous step, as follows:

(11)
where represents the th element of vector from the
previous iteration. is a diagonal matrix that compensates for
deep sources

(12)

where denotes the th column of . The FOCUSS algo-
rithm converges to a localized solution with zero contribution
from most sources. Inspired by the localization performance of
sLORETA, we incorporated standardization into the FOCUSS
algorithm as well. Substitution of (1) into (10) yields

(13)

So the resolution matrix in the th step is

(14)

The power of the source estimation in the th step is then nor-
malized as

(15)

where subscript is the index of iteration, is the source es-
timation at the th voxel given by (10), and is a 3 3
matrix containing the th diagonal block of the resolution ma-
trix. This standardized FOCUSS is very similar to FOCUSS,
except that the source estimate is normalized by the resolution
matrix to correct the bias. We have found that this significantly
improves the localization performance.

C. Single Time Point SSLOFO

Like FOCUSS, standardized FOCUSS is highly dependent
on the initialization. The algorithm starts from some initial
estimate and converges to an optimal solution near the ini-
tialization. It has been suggested that an ideal initialization of
FOCUSS would be a low-resolution image of the true sources
[16], [19]. In [19], LORETA has been successfully employed
to initialize FOCUSS. In this paper, we use the same strategy
of using a low-resolution method to initialize a high-resolu-
tion method. However, both the initialization method and the
re-weighting process are improved. We initialize standardized
FOCUSS using sLORETA, which results in an algorithm which
has much better performance than Shrinking LORETA-FO-
CUSS.

Although a proper initialization can improve the final solu-
tion estimated by standardized FOCUSS, there are still some
potential problems that deserve careful consideration. FOCUSS
is a re-weighted minimum norm method which creates an in-
creasingly sparse solution during iteration. If some nodes do
not contain any source activity, why not eliminate them from
the solution space? Furthermore, if a particular node is incor-
rectly eliminated during some iteration, is there any possibility
of bringing it back into the solution space? In [19], we de-
veloped the Shrinking LORETA-FOCUSS algorithm which at-
tempts to address these problems. This algorithm shrinks the
source space after each iteration of FOCUSS hence greatly re-
duces the computation load. A smoothing operation is employed
to prevent the algorithm from producing over-focal solution.
The smoothing operation is critical because it keeps the recur-
sive process from being trapped in some local minima. It is
equivalent to re-initializing the subsequent FOCUSS process
with a “blurred” source image after each iteration. The efficacy
of this smoothing strategy has been shown by simulation studies
in [19].

We, therefore, propose an algorithm named Standardized
Shrinking LORETA-FOCUSS (SSLOFO) that integrates the
above techniques. The algorithm can be summarized as follows.

1) Estimate the current density using sLORETA.
2) Initialize the weighting matrix according to (9), with

(16)

3) Estimate the source power using standardized FOCUSS
according to (13) and (15).

4) Retain prominent nodes along with their neighboring
nodes [19]. Adjust the values on these nodes through
smoothing [19]. The selection of “prominent nodes” may
be application-specific.

5) Redefine the solution space to contain only the retained
nodes, i.e., retain only the corresponding elements in
and the corresponding columns in .

6) Update the weighting matrix according to (11).
7) Repeat the steps (3)–(6) until a stopping condition is sat-

isfied, as discussed below.
8) Let the solution of the last iteration before smoothing be

the final solution.
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The iterations are stopped when: a) the solution does not
change in two consecutive steps, or b) the solution of any it-
eration is less sparse than the solution estimated by the pre-
vious iteration, or c) the source strength of any node exceeds
a threshold preset by the user. The first criterion indicates that
the algorithm has converged to a fixed solution. The second cri-
terion safeguards the algorithm from growing the solution space
during Step 4, which could otherwise result in nontermination
or oscillation. The third criterion is optional and it enables the
user to stop the iteration earlier according to the need of a spe-
cific application. This can avoid the production of an over-focal
solution when it is physiologically unreasonable. Such a flex-
ible strategy is especially useful in some experimental human
research.

D. Spatio-Temporal SSLOFO

When time series are considered, the basic function in (1) can
be rewritten as

(17)

where the subscript is the index of time samples.
Because of their nonlinear features, FOCUSS and Shrinking

LORETA-FOCUSS are not capable of estimating the temporal
waveforms of the spatially fixed sources. They can localize a
source at some place very close to the true position; however,
at a different time the source may be localized to a different
location, though the localization error could still be very small.
The recovered time series at a given location may, therefore, be
discontinuous.

One way to integrate temporal information is to assume that
the sources are spatially fixed during a short time window and,
thus, the linear temporal information can be factored out [5].
Based on this assumption, the single time point SSLOFO can
easily be adapted to a spatio-temporal version

1) For a given time window, at each time sample an inverse
solution is calculated by single time point SSLOFO.

2) Sum up all of these solutions in the time window to obtain

3) Re-define the solution space to be nodes that have nonzero
values in .

4) For each time sample in the window, re-calculate the in-
verse solution using the WMN method according to the
following formula:

(18)

where the weighting matrix and lead field matrix are
derived from and by eliminating the nodes/columns
other than the new solution space.

For each time sample, the source space and weight matrix
are identical, thus, the algorithm is linear. Spatio-temporal

SSLOFO is, thus, able to produce a continuous waveform at
each source location. Although the solution in (18) is calculated
using a low-resolution method (WMN), it still has very high
spatial resolution because the solution space has been confined
to a small area.

Fig. 1. The source space of the spherical head model (dark area). The
upper-left slice is the lowest part of the brain; the lower-right slice is the
topmost part of the brain.

Fig. 2. The realistic head model, with cutaway illustrating classified tissues
and superimposed EEG sampling points (dots).

III. RESULTS

A. Head Models

To evaluate the SSLOFO algorithm, simulations were carried
out in both a spherical and realistic head model. A spherical
model has been widely adopted because of its simplicity. We
chose to test SSLOFO in the spherical model so that the results
can be compared with the results of other methods in the litera-
ture. However, we also desired a characterization of SSLOFO in
a realistic geometry head model, and chose that model for our in-
vestigation into its performance with noisy measurements. This
allowed us to evaluate the potential of this algorithm in experi-
mental human research.

For a spherical model we chose the three-shell model [9]
registered to the Talairach human brain atlas [23]. This model
was kindly provided by Pascual-Marqui, R.D. The solution
space was originally restricted to cortical gray matter and
hippocampus, consisting of 2394 nodes at a 7-mm spatial
resolution. Fig. 1 shows the solution space (dark area) along
17 horizontal slices through the brain. The measurement space
consisted of 127 electrodes on the scalp. Our realistic head
model is based on classified magnetic resonance images of a
human head. The tissue is classified according to the method
discussed in [24]. The model contained 11 tissue types with
resistivities obtained from [25]. The lead-field matrix was
calculated using the finite element method [26]–[28]. This
model is illustrated in Fig. 2. The EEG observation con-
tained 145 channels and the source space consisted of 3035
locations sampled from the cortical surface at a resolution of
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Fig. 3. Reconstruction of source distribution in shape of an arc (a) 11 simulated
sources are located in shape of an arc (b) solution of WMN method; (c) solution
of sLORETA; (d) solution of FOCUSS (e) solution of SSLOFO.

4.0 4.0 3.2 mm resolution, resulting in a lead field matrix of
dimension 145 9105, with three orthogonal source directions
per location.

B. Noise-Free Simulations

We compared four different inverse methods on the spherical
model in the absence of noise: WMN, sLORETA, FOCUSS,
and SSLOFO. We included WMN, FOCUSS, and sLORETA in
this study because SSLOFO is derived from all of them, and we
wished to give a clear impression of the improved performance
that is possible with SSLOFO over each of them. Our weighting
matrix for WMN was defined as in (9). Our implementation of
FOCUSS used WMN as the initialization method, as suggested
in [16]. The noise-free simulations attempt to reflect the local-
ization ability of different algorithms so temporal courses are
not considered in this section.

Our comparison begins with a complex source distribution.
Fig. 3(a) shows 11 sources located in shape of an arc. Because
the sources are located at the same depth within the brain, we
show only the image of that slice. Fig. 3(b)–(e) illustrates the
source images produced by WMN, sLORETA, FOCUSS, and
SSLOFO, respectively. The arc is recovered to some extent by
WMN, but the spatial resolution is very low [Fig. 3(b)]. The
solution produced by sLORETA is more blurred, although the
shape of the arc can still be perceived [Fig. 3(c)]. In the FOCUSS
solution [Fig. 3(d)], some sources are lost and other sources be-
come abnormally large, changing the shape of the distribution.
The SSLOFO solution [Fig. 3(e)] is almost identical to the sim-
ulated distribution.

Fig. 4. Reconstruction of distributed source clusters by four different
algorithms. (a) The simulated source configuration; (b) solution of WMN
method; (c) solution of sLORETA; (d) solution of FOCUSS.
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Fig. 4. (Continued.) Reconstruction of distributed source clusters by four
different algorithms. (e) solution of SSLOFO.

Fig. 4(a) shows 10 source areas consisting of 41 single
sources distributed in different areas of the brain. Fig. 4(b)–(e)
displays sources reconstructed by four different algorithms,
respectively. The WMN solution is quite different from the
simulated configuration [Fig. 4(b)]. The image appears to be a
distribution with the dominant activities in the third and fourth
slices. The solution of sLORETA is so blurred [Fig. 4(c)] that
the original source configuration can barely be seen. In the
FOCUSS solution [Fig. 4(d)], many sources are absorbed and
some large spurious sources appear. The solution of SSLOFO
[Fig. 4(e)] is very similar to the simulated distribution except
for some energy leakage into slices adjacent to the actual
sources slices, which represents a small amount of spread. This
simulation shows SSLOFO is capable of recovering a number
of distributed groups of localized sources, while the other
methods studied here have poor performance.

When the sources are few and clustered, high-resolution al-
gorithms usually achieve better results compared to low-reso-
lution algorithms. For example, dipole fitting methods such as
MUSIC and R-MUSIC can localize several sources with small
localization error [4], [5]. FOCUSS is also capable of recon-
structing sparse sources. When the sources are large in number
and extended, the performance of these high-resolution algo-
rithms tend to suffer from some degradation. In such cases, a
low-resolution algorithm such as LORETA or sLORETA may
be a superior choice. As a combination of low- and high-resolu-
tion methods, SSLOFO can offer a way to achieve good results
in both worlds, especially when the situation is mixed, i.e., dis-
tributed clusters of localized sources.

Fig. 5(a) shows a large number of sources (238 dipoles)
in the temporal cortex, representing widespread activity in a
specific area. Fig. 5(b) displays the sources reconstructed by
sLORETA, and Fig. 5(c) shows the image reconstructed by
SSLOFO. The primary activated areas are more accurately
represented by SSLOFO.

Localization accuracy is a primary concern in many applica-
tions of inverse problems. One way to demonstrate localization
accuracy is to test the localization error and energy error for a
point source at each node in the model. A small energy error
combined with a small localization error indicates a faithful re-
production of a point source. A small localization error com-

Fig. 5. Reconstruction of extended source distribution by low-resolution
method and high-resolution method. (a) The simulated source configuration;
(b) solution of sLORETA; (c) solution of SSLOFO.

bined with a large energy error (approaching unity) indicates
that the peak of the inverse is located near the point source, but
energy has spread to other locations. Our definitions of localiza-
tion error and energy error can be found in [19].

The results of localization and energy error are listed in
Table I. denotes the mean localization error over all nodes
and denotes the maximum localization error among
all nodes. The third row lists the standard deviation (STD) of
localization errors. denotes the mean energy error over
all nodes and denotes the maximum energy error
among all nodes. The standard deviation of energy errors are
shown in the last row. This table shows that the mean localiza-
tion error of the SSLOFO algorithm is zero with a mean energy
error of only 2.99%. For single source, the mean localization
error of sLORETA is also zero but the mean energy error is
99.55%. This is because the image reconstructed by sLORETA
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TABLE I
COMPARISON OF LOCALIZATION ABILITY OF FOUR INVERSE ALGORITHMS

Fig. 6. (a) Mean value and standard deviation of localization error of four
algorithms (b) Mean value and standard deviation of energy error of four
algorithms.

has low resolution, with a large point spread function. The mean
energy error of FOCUSS is 8.44% while the mean localization
error is 2.33 mm. It can be inferred that FOCUSS also has good
performance in recovering single sources, but our earlier results
show that SSLOFO has advantages with multiple regions of
localized sources. WMN has much larger localization and
energy errors. The mean and standard deviation of these errors
are plotted in Fig. 6, showing that SSLOFO demonstrates su-
perior performance in both categories even for single sources.
This indicates that it can reconstruct the sources correctly and
robustly.

C. Simulation With Noisy Data

All of the preceding studies were performed in the absence
of measurement noise. Experimental data will inevitably be
contaminated by “noise” from various sources, including mea-
surement noise and background brain activity. Because the

Fig. 7. Localization error of four inverse algorithms in the spherical head
model with different noise levels.

EEG inverse problem is underdetermined and ill-posed, a small
perturbation in the measurement can cause large changes in the
solution. The technique of regularization can be used to prevent
the large number of degrees of freedom in the source space
from being used to over-fit to added noise. Tikhonov-Phillips
regularization and truncated singular value decomposition
(TSVD) are two approaches that may be used [29]–[31]. We
used Tikhonov-Philips regularization in the sLORETA stage
of SSLOFO. TSVD was then employed at each iteration of
standardized FOCUSS to exclude the smallest singular values,
with the cutoff point determined using the L-curve method [31].

In order to compare the localization ability of WMN,
sLORETA, FOCUSS, and SSLOFO at different noise levels,
a single point source with random orientation was placed at
each of the 2394 nodes of the spherical head model and the
EEG measurements were simulated. Gaussian white noise was
added to the simulated measurements and the inverse solutions
were computed using the above four algorithms. In this study,
we increase the SNR from 0 dB to 30 dB in 5-dB increments.
The SNR was defined as

(19)

where is the variance of the simulated noise-free
measurements, and is the variance of the added noise, ,
which was independent and identically distributed (IID) on
each channel. The mean and standard deviation of the local-
ization errors were computed over these 2394 simulations and
are plotted versus SNR in Fig. 7. It can be seen WMN and
FOCUSS have large localization errors. For single source local-
ization, sLORETA has smaller localization error compared to
SSLOFO, especially when the SNR is high. This result reflects
that SSLOFO seeks a tradeoff between the spatial resolution
and the precision of localization. Nevertheless, SSLOFO only
produced a localization error of 7 mm at a SNR of 15 db, which
is just one inter-grid distance in the cortical samples.

To evaluate the potential of our algorithm in experimental
human research, a realistic head model is used in the following
studies. Fig. 8(a) illustrates two groups of sources simulated in
the realistic head model. Six sources were placed in the frontal

Authorized licensed use limited to: Harvard University SEAS. Downloaded on October 29, 2009 at 14:24 from IEEE Xplore.  Restrictions apply. 



1688 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 52, NO. 10, OCTOBER 2005

Fig. 8. Reconstruction of shaped source distribution in the realistic head model
(a) the simulated source configuration; (b) solutions of four inverse algorithms.

lobe and formed a circular shape and another six sources were
placed in the occipital area in the shape of a triangle. Noise was
then added to simulated measurements with a SNR of 10 dB.
Fig. 8(b) displays the sources estimated by WMN, sLORETA,
FOCUSS, and SSLOFO. Only the plane of the sources is shown
here. It can be seen that WMN and sLORETA both produced
very blurred images while FOCUSS produced an over-focal
image. Only SSLOFO correctly recovered the complex source
distribution.

Spatio-temporal analysis of EEG is the trend in brain function
research. In the following study, we compare the performance
of four inverse algorithms in revealing the source waveforms.
Two segments of intracranial EEG recorded from the cortex
of an epileptic patient are used as the temporal waves for
three simulated sources in the realistic head model. Source1
and Source2 are close to each other; the distance between
them is 21 mm. Source3 is located far from Source1 and
Source2, at a distance of 42 and 34 mm, respectively. In
this simulation, Source2 and Source3 are synchronous sources
that have identical waveforms. The EEG segments are 500 ms
in length with a sample rate of 100 Hz. Noise was added
to the scalp measurements with a SNR of 20 dB. Fig. 9
illustrates the original source waves and the waves revealed
by WMN, sLORETA, FOCUSS, and spatio-temporal SSLOFO,
respectively. The correlation coefficients between the original
waveforms and the reconstructed waveforms were calculated
and are listed in Table II. Spatio-temporal SSLOFO produced
three waves very similar to the original source waveforms, with
correlation coefficients of 0.79, 0.97, and 0.96, respectively.
WMN produced three waves with correlation coefficients of
0.18, 0.95, and 0.99. However, the temporal reconstructions at

Fig. 9. Reconstruction of source waveforms. Three columns represent waves
on three source locations. The first row represents the original waveforms
simulated on the sources. Source2 and Source3 are 100% correlated. The
following four rows represent waveforms reconstructed by different inverse
algorithms.

TABLE II
CORRELATION COEFFICIENTS BETWEEN THE SIMULATED SOURCE WAVES AND

RECONSTRUCTED WAVES BY FOUR INVERSE ALGORITHMS

the two close locations (Source1 and Source2) are almost the
same; this indicates the temporal activities of these two sources
have been mixed. Though sLORETA is a nonlinear method,
it has very wide point-spread function so it can recover the
temporal waveforms to some extent. Because of standardization,
sLORETA provides the power of the current sources rather than
current density. So the waves produced by sLORETA are quite
different from the originals. However, for a fair comparison,
we calculated the correlation coefficients between the power of
originals and the waves given by sLORETA. Similar to WMN,
the reconstructions for source 1 and 2 resemble one other.
This is understandable because low spatial resolution methods
such as sLORETA and WMN are not able to separate two
close sources with different activities. As we have discussed
above, FOCUSS usually cannot produce a continuous wave,
as illustrated in Fig. 9.

IV. DISCUSSION

When implementing SSLOFO, some parameters should be
selected according to specific requirements. In this recursive
process, we define a neighboring region around each prominent
node and carry out a smoothing operation within this region
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[19]. This region should not be too large, because a large
neighborhood may cause the solution of each step being overly
smoothed, resulting in an early exit because of region growth. In
our simulations, the region was set to be a sphere with a radius of
two grid units in the model space. This neighboring region can
have other shapes, e.g., an ellipsoid as employed by shrinking
ellipsoid algorithm [32]. It might also be feasible to set the size
dynamically, according to the source magnitudes in the current
inverse, but we have not investigated that possibility. Another
parameter is the threshold for excluding weak source nodes at
each step. A high threshold can speed up the algorithm but may
cause the loss of meaningful nodes. In our studies, we excluded
those sources with amplitude less than 1% of the maxima in
the image. If the sources are few and focal, the threshold can be
raised to speed up convergence, but, based on our experience,
we would not suggest that a threshold higher than 5% when
there is no prior knowledge of the underlying sources. Another
important problem in the application of this algorithm to human
research is defining the stopping criterion according to specific
needs. We can cease the iterations when the maximum current
density of the solution exceeded a threshold. The maximum
allowable cortical current density could be estimated from
published experimental studies [32]–[34]. The threshold can
also depend on specific objectives of the work, e.g., if the data to
be processed are evoked potentials extracted from the EEG, or
spontaneous EEG collected during epileptic seizures. Stopping
the process earlier will generally produce an image reflecting
the general areas of activity, while a more fully iterated process
will produce a more focal solution. Regularization is another
issue that deserves further consideration. SSLOFO employs
Tikhonov regularization in the sLORETA computations and
TSVD in the FOCUSS computations. Tikhonov regularization
demands less computation effort and works well in sLORETA,
but is not as effective as TSVD in FOCUSS [16]. The TSVD
regularization parameter is usually determined by the L-curve
method. However, it should be noted that L-curve does not
always find the optimal parameter. A method that can robustly
estimate the noise level of the real data will greatly help in
finding the best regularization parameter. As such a method
remains an open topic in research, preprocessing of the EEG
data before the inverse calculation is highly preferred.

The inverse problem has no unique solution and various con-
straints can be used to produce a physiologically meaningful
source image. Low-resolution methods such as LORETA,
sLORETA, and WMN can estimate the area of primary ac-
tivity but suffer from the poor spatial resolution. These inverse
methods are useful in reconstructing some simple source con-
figurations but become inefficient for large numbers of sources
that are not restricted to a given area. The large point spread
functions of these techniques can make it difficult to discern
multiple active regions. High-resolution methods such as FO-
CUSS are able to localize focal sources which relate to some
specific diseases or functions of the brain, but these methods
are not generally robust to distributed activity and may generate
“over-focal” results. It should also be emphasized that “high
resolution” is not necessarily better than “low resolution.”
Since the extent of the brain sources may vary in different

experiments, both low-resolution methods and high-resolution
methods have their own appropriate applications.

So far most inverse methods favor one of these two extremes:
either a few clustered sources or a low-resolution rendering of
primary regions of activity. In this context, we would like to cite
a paragraph from [16]. “Although neuromagnetic activity is
believed to be often localized, distributed patterns of activity are
also known to exist, for example in epileptic seizures. Given the
severely underdetermined nature of the neuromagnetic imaging
problem, an inverse method can only provide solutions that
fit its specific objectives, e.g., reconstructing localized versus
extended sources… Although a trade off between methods
with different model objectives for different extents of the
source activity can be attempted, we expect that in the future,
successful methods in magnetoencepalography will rely on
combining a number of algorithms in a single procedure.”
Recent development in brain mapping techniques has proven
the efficiency of the combining strategy [11], [15]. By taking
fMR images as the a priori constraint of the EEG/MEG inverse
problem [11], or by combining L1-norm with L2-norm methods
[15], compromise between focal sources and smooth distribution
has been achieved.

It is, of course, possible for an investigator to manually
try several approaches and interpret the results accordingly.
SSLOFO is a modest attempt to combine the advantages
of both low- and high-resolution methods in an automated
fashion, although some limited knowledge of the situation
goes into determination of a couple parameters, and more
study on the effect of those is certainly warranted. Starting
from a very smooth estimate, SSLOFO improves the spatial
resolution using the recursive strategy of FOCUSS. A very
important process termed standardization is applied in order to
keep the estimate localized on regions with significant activity,
although multiple regions may emerge. The algorithm is further
improved by automatically adjusting the source space. Our
simulations show that SSLOFO combines the features of high
and low resolutions methods. It can extract regions of domi-
nant activity while simultaneously localizing multiple sources
within those regions. The algorithm successfully reconstructed
source configurations with different shapes, and outperformed
the low-resolution methods in reconstructing some distributed
sources. More importantly, the adaptive definition of the solu-
tion space in SSLOFO enables a convenient way to integrate
temporal information. Through a simple re-weighting strategy,
the source information derived from the nonlinear algorithm
at each time sample is incorporated into a linear process. This
spatio-temporal version of SSLOFO is able to reveal different
waveforms at close locations. This feature is especially useful
when temporal information studies such as phase synchrony,
nonlinear dynamics or spectrum analysis are performed on the
sources.
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