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A Multistage, Multimethod Approach for Automatic
Detection and Classification of Epileptiform EEG

He Sheng Liu�, Tong Zhang, and Fu Sheng Yang

Abstract—An efficient system for detection of epileptic activity
in ambulatory electroencephalogram (EEG) must be sensitive to
abnormalities while keeping the false-detection rate to a low level.
Such requirements could be fulfilled neither by single stage nor by
simple method strategy, due to the extreme variety of EEG mor-
phologies and frequency of artifacts. The present study proposes a
robust system that combines multiple signal-processing methods in
a multistage scheme, integrating adaptive filtering, wavelet trans-
form, artificial neural network, and expert system. The system con-
sists of two main stages: a preliminary screening stage in which
data are reduced significantly, followed by an analytical stage. Un-
like most systems that merely focus on sharp transients, our system
also takes into account slow waves. A nonlinear filter for separation
of nonstationary and stationary EEG components is also developed
in this paper. The system was evaluated on testing data from 81
patients, totaling more than 800 hours of recordings. 90.0% of the
epileptic events were correctly detected. The detection rate of sharp
transients was 98.0% and overall false-detection rate was 6.1%.
We conclude that our system has good performance in detecting
epileptiform activities and the multistage multimethod approach
is an appropriate way of solving this problem.

Index Terms—Adaptive filtering, artificial neural network, elec-
troencephalogram (EEG), epilepsy, wavelet transform.

I. INTRODUCTION

L ONG-TERM electroencephalogram (EEG) recording
is a widely used clinical procedure for the diagnosis of

epilepsy because it is more likely to capture epileptiform ab-
normalities, both ictal and interictal, than short-term recording.
Ambulatory EEG (AEEG), which allows the patients to move
with the portable apparatus while the EEG data are recorded
continuously, has proven to be particularly useful for the fol-
lowing purposes: 1) to confirm a clinical suspicion of epilepsy;
2) to identify interictal epileptiform activity; 3) to document
seizures that the patient is unaware of; 4) to evaluate response
to therapy; 5) to evaluate nocturnal or sleep-related events; 6) to
evaluate suspected pseudoseizures; and 7) to evaluate syncope
[1].

However, human visual review of the vast amount of AEEG
data has serious drawbacks. Visual inspection is prohibitively
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time-consuming and inefficient. As AEEG recording can last for
a whole week, even if the EEGer reads the data ten times faster
than the recording speed, reviewing a dataset will take more
than 16 h. Obviously, such exhausting work will overburden the
reader and the detection accuracy could be undermined when
the reader becomes tired. Visual inspection lacks standards. Al-
though most EEGers tend to have identical overall conclusions
on an EEG dataset, they may diverge in interpretation of spe-
cific events. Even the same reader may judge the same event
differently at different times. Visual inspection lacks quantita-
tive analysis which can uncover hidden characters of the data
[2], [3].

Thus computer-assisted analysis becomes quite necessary in
practice. To date, many automated detection algorithms have
been developed. They can be roughly divided into the following
categories.

a) Orthogonal transform: These methods, such as fast
Fourier transform (FFT), capture the rhythmic change of
EEG. Some researchers have used this method to detect
the 3c/s spike-and-wave complex [4]. Nevertheless, or-
thogonal transform must average a data segment, hence,
losing temporal details.

b) Template matching: Templates of epileptiform waves
are set. When the cross correlation between a template
and an EEG wave exceeds a threshold, an alarm signals
epileptiform activity [5]. Due to the variety of epilepti-
form waves, defining a set of templates that are suitable
for all cases is difficult. Furthermore, compromise be-
tween false detection and omission is hard to make when
setting the threshold.

c) Inverse filtering: Normal EEG is assumed to be the
output of a filter that has fixed parameters while the
input is white noise. When EEG data pass through the
inverse filter, if the output is white noise, then the input
is considered to be stationary, otherwise it is considered
nonstationary and an alarm is triggered [5], [6]. The
pitfall of this method is that false detection becomes
serious when nonstationary artifacts occur. Further, if
the characteristics of EEG changes with time but the
parameters remain fixed, then the filter’s efficiency will
fade.

d) Expert system: This method mimics human visual in-
spection and is considered to be a promising method. Pa-
rameters of EEG wave (such as amplitude, width, slope,
etc.) are calculated and thresholded [7]–[9]; at the same
time, some additional information (temporal and spatial
contexts, status of the subject, etc.) is integrated to detect
epileptic waves and reject artifacts [10]–[13].
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e) Artificial neural network (ANN): The raw EEG or some
parameters of the EEG wave are weighted and combined
to form a criterion. Then, output of the criterion is com-
pared with the threshold derived from previous training
[14]–[18].

f) Wavelet transform: It is a new approach of time-fre-
quency analysis and its advantage in epileptiform EEG
detection has been reported by a great number of re-
searchers [19]–[21].

g) Other methods:Fuzzy clustering [22], chaos theory [23],
and various other methods have been reported [24], [25].

Each method has some unique advantages in signal pro-
cessing, but none of them alone can fulfill the requirement of
epileptic EEG detection. Now it is widely recognized that a
promising way to solve such a complicated problem is to com-
bine these methods and let them supplement each other. Jones
et al. [8] have proposed a multistage system that integrated a
feature extractor and expert system together. They also claimed
that the only way to separate epileptiform from nonepileptiform
wave is to make use of a wide spatial and temporal context.
Gotmanet al. [26] developed three methods separately and
combined the results together to achieve a higher detection rate,
but they also got higher false-detection rate at the same time.

Epileptic EEG is characterized by certain abnormalities, in-
cluding spikes, sharp waves, slow waves and some slow-wave-
based complexes (spike-and-wave complex or sharp-and-wave
complex). However, most epilepsy detection algorithms in the
literature are based on the identification of sharp transients such
as spike and sharp wave [2]–[4], [8], [11], [17], [18], [20]. This
is quite insufficient because during the ictal period the EEG
often appears to be rhythmic and slow waves become an impor-
tant sign in such circumstances. Although interictal spikes pro-
vide evidence of epilepsy, interictal slow waves can also play an
important role for the diagnosis, especially in many cases when
the sharp transients do not appear. Gotmanet al. [26] have no-
ticed the importance of slow waves in seizure detection and have
employed a method to detect slow rhythmic discharges in their
system. Unfortunately, identification of slow waves is far from
direct because their morphology varies more greatly than that of
sharp transients. The difficulty of detection may be one of the
reasons why slow waves have not been fully used. Nevertheless,
the ignorance of the slow waves in most automatic detection sys-
tems has hindered their efficient use in clinics.

In order to maintain high sensitivity and low false-detection
rate for all types of epileptic waves, we propose a system based
on a hierarchical multimethod approach, which integrates the in-
formation embedded in the time, space and frequency domains.
The combination of multiple methods makes the system robust
and reliable.

Fig. 1 shows the block diagram of the system, which con-
sists of two main stages. 1) The preliminary screening stage
picks out the suspicious waves for further processing so as to
greatly reduce the data to be analyzed further. Nonlinear tech-
nique combined with adaptive prediction is developed for this
purpose. Here, we use 10-s-long windows to segment the con-
tinuous raw EEG. 2) Analytical stage employs multiple methods
to detect and classify the epileptic waves from the suspicious
segments selected by the first stage. Segments with different

Fig. 1. Block diagram of the automatic detecting system.

length picked out from the first stage are individually analyzed
by wavelet transform and artificial neural network, then all these
individual segments in the range of 10-s-long window are sub-
jected to expert system to form complexes, or to reject artifacts,
etc.

This paper consists of seven sections. The preliminary
screening procedure is described in Section II. Section III
introduces the wavelet transform we employed. Section IV
introduces the structure and learning algorithm of the ANN
we used. Section V describes the details of the expert system.
Results are presented in Section VI. Section VII contains some
discussion.

II. PRELIMINARY SCREENING

Epileptic EEG is considered to be mixture of stationary waves
and nonstationary transients; they can be separated by the fol-
lowing filtering scheme. The original structure of this filter is
proposed in [27]. We improved it to fit the need for the separa-
tion of different components of the epileptic EEG (Fig. 2).

As shown in Fig. 2, let EEG time series pass through the
filter, the signal will be separated into two parts. The nonsta-
tionary output contains spikes, sharp waves, artifacts and
some high amplitude slow waves. The stationary partcon-
tains the normal EEG background activities and relatively low-
amplitude slow waves.

In this scheme, the key component is the adaptive predictor. It
uses the stationary output to estimate the next input . The
estimation error is . Suppose the input becomes nonstationary,
then will go up. In Fig. 2, the stationary output is given by

(1)

and the nonstationary output is given by

(2)

where is a nonlinear function (Fig. 3).
When estimation error is small , it can be in-

ferred from Fig. 3 that , so the nonstationary output
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Fig. 2. Filter separates the stationary and nonstationary components of EEG
signal. Different types of epileptic waves will appear in these two sections,
respectively.

Fig. 3. Nonlinear functionF (�) used in preliminary screening.e means the
estimation error.

will become zero and the stationary output
. In this case, the input signal is considered to be stationary.
When is large enough , will become

zero, therefore, the nonstationary output . And the sta-
tionary output (the predicted stationary component).

The effectiveness of the separation depends on the structure
and parameters of the adaptive predictor in Fig. 2. In this paper,
we propose a predictor based on ANN technique (Fig. 4).

This predictor is a three-layered feed-forward perceptron. Es-
timation at time is given by

(3)

where represents the weight coefficient, is the number of
neurons in the hidden layer (Fig. 4), and is the output of the
th neuron in the hidden layer

(4)

Fig. 4. Adaptive predictor based on ANN; the parameters will be adapted by
BP algorithm.

where
;

;
sigmoid function: .

In fact, this predictor is a noncausal filter, which estimates
the signal at time using the signals around this time point.
Estimation is more accurate using noncausal filter than using
causal filter; the noncausal technique is feasible because our
system does the analysis offline.

The weight coefficients of this multilayered perceptron are
dynamically adjusted according to the estimation error

(5)

The back-propagation (BP) algorithm is the most widely used
method for adjusting the weights in ANN. We modify it by em-
ploying the delta adaptation (DA) algorithm, which is basically
a second-order BP algorithm [16] The DA algorithm can be for-
mulated as follows.

For the output layer

(6)

(7)

(8)

For the hidden layer

(9)

(10)

(11)

where and are auxiliary variables initialized ran-
domly; is the learning coefficient, is the step length, and
and are the factors for the momentum terms. We set ,

, , and in our system according to
Weng’s simulation research [16] is an adaptive factor that
affects the converging speed, and it is calculated as

(12)
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where is approximately the energy of in the window

(13)

is a constant derived from training. It is the convergence
factor when energy is zero. After optimizing by the “golden
section method” [28] with the training data, is set to 0.00005.

For the nonstationary component , we set a dynamic
threshold of the amplitude based on moving average technique.
The threshold of the th point is calculated by

(14)

where is the regression factor. We select after
optimizing with the training data. means absolute value;

is the moving average value of nonstationary output

(15)

It should be noted that the threshold and moving average
value do not refresh when the wave exceeds threshold
until the wave falls below the threshold again. The initialization
of and can both be set to the mean value of a rela-
tively smooth segment in .

If any wave in exceeds the threshold, the episode will be
recorded, and the original EEG data in this episode will then be
sent to the analytical stage for further analysis.

For the stationary part , we first smooth it by averaging

(16)

Again, a dynamic amplitude threshold is adopted to decide
which segment of should be recognized as the low ampli-
tude slow wave and sent to the analytical stage. The dynamic
threshold is calculated in the same way as that for nonstationary
output .

Fig. 5 shows a segment of the original EEG, with the corre-
sponding nonstationary component, and the stationary com-
ponent after smoothing, . It is clear that sharp transients and
high amplitude slow waves have been separated into the non-
stationary section, whereas the low-amplitude slow waves have
been separated into the stationary section. Background EEG is
suppressed and slow epileptic waves become more prominent
in the signal (Fig. 5).

In order to test the efficiency of preliminary screening, eight
1-h-long 16-channel EEG records from eight typical epileptic
patients were processed. The results were compared with the
report made by human experts. According to this test, all the
1018 sharp transients and 9117 out of the 9398 slow waves were
detected by the preliminary screening stage. In this stage, the
detection rate of slow wave was 97.0%, and the detection rate
of all the epileptic waves was 97.3%, whereas the data volume
was reduced to about 25%.

III. W AVELET TRANSFORM

Wavelet transform is a multiresolution analysis tool that can
disclose the characteristics of the signal in joint time-frequency
domain. It is quite suitable for processing of nonstationary

Fig. 5. Result of stationary and nonstationary components separation.x

is the raw EEG,ẑ is the nonstationary component,g is the stationary
component after smoothing. Nonstationary component consists of sharp
transients and high amplitude slow waves. Stationary component consists of
relatively low-amplitude slow waves.

signal and has been successfully applied to the analysis of EEG
[19]–[21] and other biological signals [29].

Discrete wavelet transform (DWT) is widely used because
it demands relatively less computation compared to continuous
wavelet transform (CWT). The main limitation of DWT is the
roughness of its scale increment which doubles itself between
two adjacent levels. However, CWT can achieve finer scale sam-
pling so it is able to analyze signal with higher frequency reso-
lution and that is why we adopt it in our EEG system.

CWT of time series is defined as

CWT (17)

where denotes the mother wavelet, “” indicates complex
conjugate, represents the chosen wavelet scale,is the time-
shifting parameter.

By varying the wavelet scale, wavelet transform decom-
poses the signal into different frequency bands according
to the value of ; larger corresponds to lower frequency but
broader field of view, whereas smallercorresponds to higher
frequency but narrower field of view.

The computation load of calculating CWT directly from its
definition (17) is quite demanding. So fast algorithm of it is nec-
essary. Some fast CWT algorithms have been developed, such
as that based on chirped Z transform [30], and that based on
filter bank [31].

We have proposed a fast CWT algorithm based on the Mellin
transform, which calculates wavelet coefficients of different
scales simultaneously at a given time instant [32], whereas
other algorithms calculate wavelet coefficients of different
time instants consecutively at a given scale [30], [31], [33].
Since the data have been segmented into different length after
preliminary screening stage, it is more appropriate to compute
wavelet transform by the first approach. Only two inverse
FFTs and one FFT are needed for each calculation. A detailed
discussion about this algorithm can be found in [32].
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Fig. 6. EEG signal is decomposed by wavelet transform. High-frequency
components appear in smaller scales, low-frequency components appear in
larger scales.

Thirty-two scales are used to decompose the EEG segments
selected by the preliminary screening stage. The scale parameter

is sampled geometrically as

(18)

where is the ratio between adjacent levels. It is set to 1.06 in
our system, thus, the scales span from to , which
are wide enough to cover all the useful frequency components
in EEG.

Marr wavelet is selected as the mother wavelet, which is de-
fined as

(19)

Fig. 6 shows the result of wavelet transform. The topmost
curve is an original record of EEG with epileptiform discharge.
It is decomposed into three basic components (spikes, sharp
waves, and slow waves) by CWT. The curves below the topmost
one are wavelet coefficients in different scales. It can be clearly
seen that as the scales increase, the frequency components of
EEG are resolved in an orderly way—from high frequencies to
low frequencies.

After wavelet transform, spikes are prominent in the eight
lowest scales (scale index 0–7), sharp waves appear in the eight
medium scales (scale index 4–11), and slow waves appear in the
four higher scales (scale index 24–27). Different thresholds are
set for these scales. If any wave exceeds the threshold, it will be
picked out for further processing.

We use background amplitude of wavelet coefficients as the
threshold. In the th scale the background is denoted as .

At every time point , its value is dynamically adjusted in a
similar way as equations (14) and (15)

(20)
where is the wavelet coefficients, is the moving
average value of wavelet coefficients in scale level

(21)

The regression factor is set to 0.9933 based on our training
data.

The background amplitude and moving average value
do not refresh when the wave exceeds background

until the wave falls below the background amplitude again. The
initialization of and can both be set to the mean
value of a relatively smooth segment in .

Wavelet transform is also an effective way to reject artifacts.
After the transform, many artifacts will only appear in one or
two scales, but they will not appear in as many adjacent scales
as epileptic waves do. Therefore, the artifacts can be rejected
from the signal if multiscale information is employed.

From above processing, the three basic components of
epileptic waves have been decomposed into three different
groups of scales; hence the subsequent processes can be
designed individually for each group.

IV. FEATURE EXTRACTION AND ARTIFICIAL

NEURAL NETWORK

A. Feature Extraction

If the wavelet coefficients of the predefined scales are to be
analyzed further, some feature parameters of the wavelet coeffi-
cients must be extracted first. These parameters will then act as
the input of the ANN. ANN will decide whether the suspicious
wave is similar to epileptic wave and how great the similarity is.

We use waveform features of wavelet coefficients rather than
wavelet coefficientsper seor raw EEG data directly as the input
of ANN. Because EEG waveforms are quite different from pa-
tient to patient, if we use the wavelet coefficients or raw EEG
data as input, it is almost impossible for the network to cluster
these various waveforms. Koet al. [17] have concluded that
spike detection using raw EEG data as input of ANN is unlikely
to be feasible under current computer technology.

Feature parameters are defined as the following (Fig. 7).

1) Relative amplitude 1 ( and : Voltage differ-
ence between the peak and valleys of a wave divided by
the background amplitude (the subscriptstands for the
ascending branch and the subscriptfor the descending
branch)

(22)

where is the background amplitude of wavelet co-
efficients at the time when the wave reaches the peak. The
background amplitude is calculated using (20) and (21).

2) Relative amplitude 2 ( and ): The potential
difference between the peak and turning points divided
by background amplitude

(23)
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Fig. 7. Feature parameters as the input of ANN. Different sets of parameters
are used for different types of wave.

Turning point is defined as the point where the slope
decreases more than 50% compared to that of the pre-
ceding point for the first time (starting from the peak
point).

3) Duration 1 : Number of data points between the start
and the end points of the wave, shown as in Fig. 7.

4) Duration 2 : Number of data points between the two
turning points of the wave, shown as in Fig. 7.

5) Duration 3 : Distance between the two “half-max-
imum points.” Half-maximum points are points where the
amplitudes are half of or . Refer to in
Fig. 7.

6) Sharpness : Sharpness is the changing rate of the
slope at the peak point. If the peak point is denoted as,

can be calculated as

(24)

where is the slope at point

(25)

means the th point of the wavelet coefficients of
scale .

7) Slope ( and ): Slope of the lines connecting
the peak and the two turning points (refer to Fig. 7)

(26)

For the three basic epileptic components, we use different
set of parameters. For spike and sharp wave, seven parameters
( , , , , , , ) are used; for slow
wave, four parameters ( , , , ) are used.

B. Artificial Neural Network and “Twice-Learning” Algorithm

Three similar MLP neural networks are designed respectively
for detection of spikes, sharp and slow waves. Each has different
number of input nodes, hidden layer nodes and one output node.
The inputs of the network are those feature parameters acquired
above and the output indicates the proximity between the input

Fig. 8. Structure of ANN. Number of input nodes depends on the type of
epileptic wave. For spike, number of input nodes is 7� 8 = 56; for sharp
wave, it is 7� 8= 56; and for slow wave, it is 4� 4= 16.

wave and the corresponding basic epileptiform waves. In prac-
tice, it is more reliable to give the likelihood of a wave being
epileptic than declaring yes-or-no categorically. Hence, in our
system linear output is used to take the place of binary output,
so that the value of the output gives the proximity of the input
wave.

In order to gain linear output from the network, some scholars
set the desired output by statistical distance of the training
data [34]. The training process is not reliable because the
desired output does not reflect the pattern of input objectively.
This paper proposes an efficient “twice-learning” algorithm to
achieve linear output from the three-layer BP neural network
and to reduce human interference.

The structure of the ANN is illustrated in Fig. 8. is the
number of scales we use; it is also the number of hidden layer
nodes. (i.e., for spikes: , sharp waves: , slow
waves: ). is the number of input parameter (i.e., for
spikes: , sharp waves: , slow waves: ).

is the th parameter extracted from theth scale. The order
of the parameters is the same for all scales.

The “twice-learning” algorithm is described as following:
In the first step, the desired outputs are binary and set by

human expert. The networks update their coefficients using
weighted BP learning algorithm. When the training is finished,
the networks have the ability to separate the data roughly into
two groups. The outputs will be very close to one or zero. The
closer a wave approximates the pattern of an epileptic wave,
the larger will be the output, andvice versa.

In the second step, the outputs of all the “positive” samples
are sorted, then the maximum and minimum output, denoted as

and , are found. For a “positive” sample with output
, its desired output for the second round training is defined as

(27)

Thus, all the “positive” samples will have desired output falling
in the range 0.55 to 1.
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Similarly, we find the maximum and minimum output of
“negative” samples, denoted as and , then define
the desired output as

(28)

The network is then trained again using the new desired
output; the coefficients are also updated by weighted BP
learning algorithm.

The “twice-learning” algorithm proved to be efficient for
training. The first step provides objective output for the second
step, and increases the convergence speed as well. The second
step enables the network to produce linear output according
to the pattern of input data. It successfully avoids the artificial
interference in training, thus maintaining the objectivity and
congruity of the output.

After the two steps, the network can give the proximity of a
wave to a specific epileptiform wave: spike, sharp or slow wave.
All waves having proximity higher than 0.35 are sent to expert
system for further analysis. We choose such a low threshold
mainly for two reasons: 1) epileptic waves often appear in mul-
tiple channels; in some channels the waves have high amplitudes
but in some other channels they may have low amplitudes, thus,
their proximity might be small; and 2) some parts in complex
waves are not prominent, e.g., spike may be covered by slow
wave or slow wave can be very small in complex waves. These
waves will not be missed by a low threshold strategy and ex-
pert system will then enhance their proximity according to the
heuristic rules.

V. EXPERT SYSTEM

Expert system fully exploits the spatial and temporal
contextual information in order to reject artifacts. Several
heuristic rules are combined to distinguish artifacts (such as
eye blink, electrode movement or other artifacts) from epileptic
waves. Thereafter, some isolated waves are reconstructed into
spike-and-slow complex or sharp-and-slow complex. Finally
the decision is made as to whether the wave is a kind of
epileptic wave and, if so, to which kind it belongs. The rules
we have used are listed as follows.

1) Adjacent spike and slow wave or adjacent sharp and slow
wave should be combined into complex waves.

2) Slow waves in Fp1 and Fp2 are more likely to be eye
blinks.

3) Epileptic waves usually do not achieve their peaks exactly
at the same time in all channels.

4) Epileptic waves usually do not appear solely, neither spa-
tially nor temporally.

5) wave is easy to be confused with sharp waves, but it
mainly occurs in O1 and O2, and may appear to be con-
secutive sharp waves.

6) -complex during sleep is a kind of slow wave but
usually overridden by spindles (appear to be consecutive
small sharp waves here).

7) Normal slow waves in sleep stages should not be falsely
judged.

More heuristic rules can be easily added into our system so
it is possible to mimic the judging procedure of human expert
better in the future. The above rules are implemented in fol-
lowing three aspects.

A. Integration of Multiscale Information

Components of different frequency have been separated into
different scales after wavelet transform. This step integrates
the waves of these scales. All of the waves whose output from
neural network exceeds the threshold 0.35 are put into a queue;
some adjacent waves are then combined into complex waves
(e.g., spike-and-slow complex or sharp-and-slow complex);
some overlapped waves are classified accordingly.

B. Spatial Information Integration

Eye blinks can be distinguished in the frontal channels. If
some high-amplitude slow waves are found simultaneously
in channels Fp1 and Fp2, and their durations are longer than
200 ms, they will be rejected as eye blinks.

Epileptic waves in different channels always have similar pat-
terns, but their peaks usually do not appear exactly at the same
time, i.e., a time delay could be found between the two peaks.
Thus, we could discriminate between transients caused by elec-
trode movement and real epileptic transients based on this fact.
A sudden movement of electrode may cause a waveform similar
to sharp wave in many channels, but their peaks usually appear
in all channels at the same time point. If this case occurs, and
around this transient there is no other epileptic waves, then it
should be rejected as artifacts caused by electrode movement.

If a wave has similar patterns in many channels (e.g., their
starts, ends, and peaks are very close) then its proximity should
be increased by 0.2. Conversely, if a wave has no “image” in
other channels, its proximity will be decreased by 0.2. The in-
crease or decrease of the proximity is not arbitrarily set but de-
cided by training. It is chosen to be 0.2 on our training data.

Some waves overlap with sharp waves in frequency domain
so they may cause confusion. Fortunately,waves mostly ap-
pear in channels O1 and O2, hence, when more than three adja-
cent sharp waves appear in these two channels, and their prox-
imity are not very large, then they should be rejected aswaves.

C. Use of Temporal Context

Proximity of a wave will be increased if it has temporal sup-
port for its existence, otherwise the proximity will be decreased.

If a spike has rather small proximity, but it is followed by a
slow wave with large proximity, then the proximity of the spike
should be increased by 0.2.

If a sharp wave or spike appears solely and there is no other
epileptiform waves in the previous or following 1 s, then prox-
imity of this wave should be decreased by 0.2.

If a slow wave in frontocentral area has high-amplitude long-
duration biphasic waveform with overriding consecutive small
sharp waves, we will take this slow wave as-complex in sleep
stage and eliminate it from epileptic waves.

During the sleep hours according to patient’s diary, the
threshold for slow waves will be set to 0.95. This is because
slow waves can be normal waveforms in sleep stages. Thus,
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only a small number of slow waves with very high likelihood
during sleep hours will be picked out for human review.

Every suspicious wave should be tested again according to
the definition of spike, sharp wave and slow wave. Only those
agree with the definition in duration, amplitude, and symmetry
will be retained.

VI. RESULTS

The system was evaluated using 8-channel clinical EEG
records of 81 epileptic subjects. The data were chosen from
the patient databases of four hospitals; none of them had been
used previously in system development, and the data were not
pre-selected in any way. Thus, the testing procedure can reflect
the real performance of our system in clinical application.

The records ranged from 4 to 24 h in length, totaling more
than 800 h. The data contained all types of epileptiform activ-
ities, including focal and nonfocal epileptic EEG, e.g., single
spikes, spike bursts, spike-slow wave bursts, sharp waves, slow
wave bursts, and sharp-slow waves, all in various amplitudes.
Almost all kinds of artifacts that commonly appear in AEEG
can be found in our data, such as artifacts caused by eye blink,
muscle strengthen, electrode movement, etc. The placement of
the electrodes was identical for every record. But the records dif-
fered in length and were gathered by different EEG machines,
so we had converted the data into same format. The sampling
rate was 100 Hz and A/D conversion precision was 8 bit.

For comparison with analysis of human experts, the data
were subjected to computer analysis and human review inde-
pendently. Reports made by human experts were taken as the
reference. In the computer analysis, all events having proximity
larger than a threshold were reported and compared with the
result of human review. The threshold was set to 0.80 to achieve
best compromise between sensitivity and specificity on our
training data (except the slow waves during sleep stages, for
these waves the threshold was 0.95). It might change slightly
for other training data. We also provided a user interface in our
system which enables the user to multiply a factorto the
threshold, thus the final threshold will be . By adjusting
the factor the EEGer can manually change the threshold to
achieve better result on a specific subject when it is needed.

We divided these 81 records into three groups.

Group 1) Records dominated by slow waves.
Group 2) Records dominated by spikes, sharp waves, and

complexes.
Group 3) Records contaminated by many artifacts.
Table I illustrates the result of the analysis.
In Group 1, spikes and sharp waves rarely appeared. Slow

waves became the most important indication of events. As slow
waves have been fully considered in our system, the epilep-
tiform activities can be correctly pointed out. Records in this
group amounted to 450 h in length, in which human experts
found 86 434 events. 88.9% of these events were detected by
ours system and the false detection rate was 5.6%. The false de-
tection rate was calculated as

False Detection Rate
False Positive Events

(All Events Found By Human Experts)

TABLE I
STATISTICS OFSYSTEM PERFORMANCE

The result show our system can distinguish most events even
the sharp transients are few in EEG.

Group 2 contained many spikes, sharp waves, and complexes,
and also large amount of slow waves. Records in this group
added up to 350 h in length, including 48 841 events. 98.0%
of the sharp transients were detected correctly. Detection rate of
all epileptic events was as high as 92.4% with a false detection
rate of 6.4%. Though slow waves have been paid much atten-
tion, sharp transients have not been neglected at all. The results
show our system is very sensitive to sharp transients.

Group 3 contained many artifacts that usually hamper the au-
tomatic detecting system. However, in our system, most of these
artifacts can be recognized and rejected. Records in this group
amounted to 60 h in length. The detection rate in this group
reached 88.2% and the false rate was 10.1%. It can be inferred
that the system rejects artifacts satisfactorily.

The overall detection rate of the spikes, sharp waves and com-
plexes was 98.0% when the results of the three groups were
combined. It also proved satisfactory for slow wave recognition
even though they are harder to be detected compared to sharp
transients; the detection rate of slow wave was 86.8%. Overall,
90.0% of the epileptic waves were correctly discriminated and
classified, whereas the false rate was kept at 6.1%.

We plot the receiver operating characteristic (ROC) curve to
evaluate the system performance on the whole testing data set.
In our system, the final threshold for detection of epileptic waves
is . We vary the factor step by step in the range [0.35,
1.25] and calculate the detection rate and false rate in every step.
Then, we obtain the ROC curve as shown in Fig. 9. The area
under ROC curve is about 95%. The area under ROC curve re-
flects the tradeoff between sensitivity and specificity; a larger
area indicates better discrimination ability of the system [35].
The large area under our ROC curve has proved the system can
have high sensitivity and high specificity at the same time.

The proposed system also has an attractive processing speed.
In our test, the average speed is about 60 times faster than
recording speed on a general purpose PIII400 Pentium PC.
Thus, a 24-h-long record can be processed in 24 min. It should
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Fig. 9. ROC curve for final threshold. The area under ROC curve is around
0.95. The large area under the ROC curve indicates the system can have high
sensitivity and high specificity at the same time.

be noted the speed also depends on the proportion of epileptic
waves in the raw EEG.

VII. D ISCUSSION

In this paper, we set up a scheme for automatic detection of
epileptic EEG. Multiple up-to-date signal-processing methods
are integrated into one system so that they can complement mu-
tually to improve the overall performance of the system. The
system also makes good use of spatial and temporal contextual
information while taking care of all kinds of epileptiform waves,
including spike, sharp wave, slow wave, and wave complex. The
output of the system indicates the type of the wave and the like-
lihood of the wave to be epileptic.

In order to fit the requirements for clinical use, an automatic
detection system should pay more attention to slow epileptiform
activities while identifying the sharp transients. The multistage
multimethod approach proposed here is quite effective in iden-
tifying different kinds of epileptic waves. Even with clear def-
initions of the scope of amplitude and width, it is not realistic
to classify epileptic waves by definitions alone. A good system
should take into account the background amplitude and rhythm
besides analyzing the morphologies of waves. In our work, we
set up dynamic thresholds based on the background activities.
However, much work can still be done in the future; for example,
the basic rhythm of EEG background in different physiological
stages must be considered. Awave may indicate abnormality
if it appears on an adult’s EEG, but it can be the main rhythm of
a healthy child’s EEG. Some other physiological or patholog-
ical conditions of the subject can also affect the judgment.

Another hard problem is how to avoid misinterpretation of
waves during sleep. Beunet al. [36] found that paroxysmal
sharp transients may be recorded during drowsiness or sleep in
healthy subjects. During sleep stage I, there will be some pos-
itive occipital sharp transients (POSTs) and vertex sharp tran-
sients, these are normal sleep patterns and should not be mis-

taken for epileptic waves. Moreover, in sleep stage I, stage II,
and also in REM sleep,wave will frequently appear in EEG; in
sleep stage III and IV, wave will appear with high amplitude.
These waves can hardly be discriminated from epileptic slow
waves because of their similar morphologies and distributions.
Thus, a better system should analyze the sleep stages and adjust
the judge standard according to different sleep status. However,
automatic sleep staging is also a difficult problem and there is
still a long way to go before it can be solved. Currently, we have
started the effort to integrate an automatic sleep staging system
with the epileptic EEG detection system to obtain a more reli-
able result.

Maintaining high flexibility of the system is also an impor-
tant point. Waveforms may differ greatly between patients or be-
tween different periods of the same patient, so the system must
be flexible in order to retain efficiency under various circum-
stances. In the present system, we use adaptive prediction in the
preliminary screening stage and set self-adaptive thresholds at
various points of the analytical stage. The system adjusts its pa-
rameters dynamically when the characteristics of the input data
change. Thus it is more robust for long-term data processing and
for data from different subjects.

“Begin in roughness, end in fineness” is an important phi-
losophy in our design. An efficient strategy in our system is
reducing data before the detailed analysis. According to our
statistics, the preliminary screening reduces about 75% of the
data; this guarantees the system a fast processing speed. When
training the ANN, the “twice-learning” algorithm also validates
the philosophy. In the first step, the training dataset are roughly
divided into two main groups, in the second step, a linear output
is given to indicate the likelihood of a wave to be epileptic. This
methodology guarantees the fast convergence of network while
achieving linear output.

Based upon these ideas, improvement of our system is just
under way.
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