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A Multistage, Multimethod Approach for Automatic
Detection and Classification of Epileptiform EEG

He Sheng Lit, Tong Zhang, and Fu Sheng Yang

Abstract—An efficient system for detection of epileptic activity time-consuming and inefficient. As AEEG recording can last for
in ambulatory electroencephalogram (EEG) must be sensitive to g whole week, even if the EEGer reads the data ten times faster
abnormalities while keeping the false-detection rate to a low level. than the recording speed, reviewing a dataset will take more
Such requirements could be fulfilled neither by single stage nor by . ! . .
simple method strategy, due to the extreme variety of EEG mor- than 16 h. Obviously, s'uch exhausting work will overbgrden the
phologies and frequency of artifacts. The present study proposes a feader and the detection accuracy could be undermined when
robust system that combines multiple signal-processing methods in the reader becomes tired. Visual inspection lacks standards. Al-
a multistage scheme, integrating adaptive filtering, wavelet trans- though most EEGers tend to have identical overall conclusions
form, artificial neural network, and expert system. The system con- on an EEG dataset, they may diverge in interpretation of spe-

sists of two main stages: a preliminary screening stage in which ifi ts. E th d ‘udae th t
data are reduced significantly, followed by an analytical stage. Un- Cic events. Even the same reader may judge the same even

like most systems that merely focus on sharp transients, our system d.ifferently at diﬁ?rem times. Visua_l inspection lacks quantita-
also takes into account slow waves. A nonlinear filter for separation tive analysis which can uncover hidden characters of the data
of nonstationary and stationary EEG components is also developed [2], [3].

in this paper. The system was evaluated on testing data from 81 Thus computer-assisted analysis becomes quite necessary in

patients, totaling more than 800 hours of recordings. 90.0% of the ti To dat ¢ ted detecti lgorith h
epileptic events were correctly detected. The detection rate of sharp practice. 1o date, many altomaled aetection algorithms have

transients was 98.0% and overall false-detection rate was 6.1%. been dere|0ped- They can be roughly divided into the following
We conclude that our system has good performance in detecting categories.
fepileptiform qctivities and th_e mulyistage multimethod approach a) Orthogonal transform: These methods, such as fast
Is an appropriate way of solving this problem. Fourier transform (FFT), capture the rhythmic change of
Index Terms—Adaptive filtering, artificial neural network, elec- EEG. Some researchers have used this method to detect
troencephalogram (EEG), epilepsy, wavelet transform. the 3c/s spike-and-wave complex [4]. Nevertheless, or-
thogonal transform must average a data segment, hence,
|. INTRODUCTION losing temporal details.
b) Template matching: Templates of epileptiform waves
are set. When the cross correlation between a template
and an EEG wave exceeds a threshold, an alarm signals
epileptiform activity [5]. Due to the variety of epilepti-
form waves, defining a set of templates that are suitable
for all cases is difficult. Furthermore, compromise be-
tween false detection and omission is hard to make when
setting the threshold.
c) Inverse filtering: Normal EEG is assumed to be the
output of a filter that has fixed parameters while the
input is white noise. When EEG data pass through the
inverse filter, if the output is white noise, then the input
is considered to be stationary, otherwise it is considered

[4]. nonstationar is tri
. . y and an alarm is triggered [5], [6]. The
However, human visual review of the vast amount of AEEG pitfall of this method is that false detection becomes

data has serious drawbacks. Visual inspection is prohibitively serious when nonstationary artifacts occur. Further, if

the characteristics of EEG changes with time but the
parameters remain fixed, then the filter's efficiency will

ONG-TERM electroencephalogram (EEG) recording

is a widely used clinical procedure for the diagnosis of
epilepsy because it is more likely to capture epileptiform ab-
normalities, both ictal and interictal, than short-term recording.
Ambulatory EEG (AEEG), which allows the patients to move
with the portable apparatus while the EEG data are recorded
continuously, has proven to be particularly useful for the fol-
lowing purposes: 1) to confirm a clinical suspicion of epilepsy;
2) to identify interictal epileptiform activity; 3) to document
seizures that the patient is unaware of; 4) to evaluate response
to therapy; 5) to evaluate nocturnal or sleep-related events; 6) to
evaluate suspected pseudoseizures; and 7) to evaluate syncope
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e) Artificial neural network (ANN): The raw EEG or some Ch 1]
parameters of the EEG wave are weighted and combin —»
to form a criterion. Then, output of the criterion is com
pared with the threshold derived from previous trainin
[14]-[18]. Ch 2

f) Wavelet transform: It is a new approach of time-fre- —>
quency analysis and its advantage in epileptiform EE
detection has been reported by a great number of |:
searchers [19]-[21]. a .

g) Other methods: Fuzzy clustering [22], chaos theory [23], :
and various other methods have been reported [24], [2

Each method has some unique advantages in signal f

cessing, but none of them alone can fulfill the requirement
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epileptic EEG detection. Now it is widely recognized that ~ "® Wavelet | | Feature
promising way to solve such a complicated problemisto cor = [ Transform [{ Extraction |{ANN]
bine these methods and let them supplement each other. Jc |

et al. [8] have proposed a multistage system that integrated a
feature extractor and expert system together. They also clainf@gd 1. Block diagram of the automatic detecting system.
that the only way to separate epileptiform from nonepileptiform

wave is to make use of a wide spatial and temporal contejdngin picked out from the first stage are individually analyzed
Gotmanet al. [26] developed three methods separately argl, \avelet transform and artificial neural network, then all these
combined the results together to achieve a higher detection rat&iviqual segments in the range of 10-s-long window are sub-

but they also got higher false-detection rate at the same tim&ected to expert system to form complexes, or to reject artifacts,
Epileptic EEG is characterized by certain abnormalities, iyc.

cluding spikes, sharp waves, slow waves and some slow-waveThisg paper consists of seven sections. The preliminary
based complexes (spike-and-wave complex or sharp-and-wg¥feening procedure is described in Section II. Section Il
complex). However, most epilepsy detection algorithms in thgiroduces the wavelet transform we employed. Section IV
literature are based on the identification of sharp transients sygftoduces the structure and learning algorithm of the ANN
as spike and sharp wave [2]-[4], [8], [11], [17], [18], [20]. Thisye ysed. Section V describes the details of the expert system.

is quite insufficient because during the ictal period the EEResults are presented in Section VI. Section VII contains some
often appears to be rhythmic and slow waves become an impgiscyssion.

tant sign in such circumstances. Although interictal spikes pro-
vide evidence of epilepsy, interictal slow waves can also play an
important role for the diagnosis, especially in many cases when
the sharp transients do not appear. Gotmal. [26] have no- Epileptic EEG is considered to be mixture of stationary waves
ticed the importance of slow waves in seizure detection and hajed nonstationary transients; they can be separated by the fol-
employed a method to detect slow rhythmic discharges in th&wing filtering scheme. The original structure of this filter is
system. Unfortunately, identification of slow waves is far fronRroposed in [27]. We improved it to fit the need for the separa-
direct because their morphology varies more greatly than thatisin of different components of the epileptic EEG (Fig. 2).
sharp transients. The difficulty of detection may be one of the AS shown in Fig. 2, let EEG time series, pass through the
reasons why slow waves have not been fully used. Neverthelddtgr, the signal will be separated into two parts. The nonsta-
the ignorance of the slow waves in most automatic detection s§i@nary outputz, contains spikes, sharp waves, artifacts and
tems has hindered their efficient use in clinics. some high amplitude slow waves. The stationary pareon-

In order to maintain high sensitivity and low false-detectioffins the normal EEG background activities and relatively low-
rate for all types of epileptic waves, we propose a system bagdgplitude slow waves. _ . _
on a hierarchical multimethod approach, which integrates the in-" this scheme, the key component s the adaptive predictor. It
formation embedded in the time, space and frequency domaiftges the stationary outpif to estimate the next input, . The

The combination of multiple methods makes the system rob@timation erroris,,. Suppose the input becomes nonstationary,
and reliable. then|e,, | will go up. In Fig. 2, the stationary output is given by

Il. PRELIMINARY SCREENING

Fig. 1 shows the block diagram of the system, which con-
sists of two main stages. 1) The preliminary screening stage
picks out the suspicious waves for further processing so asj{9q the nonstationary output is given by
greatly reduce the data to be analyzed further. Nonlinear tech-
niqgue combined with adaptive prediction is developed for this 2 =en — Fley) 2)
purpose. Here, we use 10-s-long windows to segment the con-
tinuous raw EEG. 2) Analytical stage employs multiple methodshereF'(e) is a nonlinear function (Fig. 3).
to detect and classify the epileptic waves from the suspiciousWhen estimation erro#,, is small(je,| < 1), it can be in-
segments selected by the first stage. Segments with differéred from Fig. 3 thaf’(e,,) = e,,, S0 the nonstationary output

Un = Un + F(en) (1)
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Fig. 2. Filter separates the stationary and nonstationary components of EEG ) ) )
signal. Different types of epileptic waves will appear in these two sectionig. 4. Adaptive predictor based on ANN; the parameters will be adapted by

respectively. BP algorithm.
A where
Jj o #F0
F(en) 7 =1,...,m;
______ f(e) sigmoid function:f(z) = 1/(1 + e~%).
81 I In fact, this predictor is a noncausal filter, which estimates
: the signal at timex using the signals around this time point.
—& —& : Estimation is more accurate using noncausal filter than using
X 0 8 € » causal filter; the noncausal technique is feasible because our
! 1 2 €, system does the analysis offline.
' The weight coefficients of this multilayered perceptron are
------ —-§ dynamically adjusted according to the estimation ebyor
Bn = Qn - 'Jjn (5)
The back-propagation (BP) algorithm is the most widely used
method for adjusting the weights in ANN. We modify it by em-
ploying the delta adaptation (DA) algorithm, which is basically
Fig. 3. Nonlinear functiorf'(e) used in preliminary screening,, means the asecond-order BP algorlthm [16] The DA algorlthm can be for-
estimation error. mulated as follows.
For the output layer
%, will become zero and the stationary outpgyt= 7,, + ¢, = < - N -
x,. In this case, the input signal is considered to be stationary. In(l =9 )(y~ ) ©)
Whene,is large enougt|e,| > e2), F(e,) will become AA, =AAA,_1 + 6, + 0AA,_> @)
zero, therefore, the nonstationary outpyt= ¢,. And the sta- i(2) ; (@)
tionary outputy,, = 7, (the predicted stationary component). Awy iy =2pA A, dy, + alw, ™. (8)

The effectiveness of the separation depends on the structg the hidden layer
and parameters of the adaptive predictor in Fig. 2. In this paper,

we propose a predictor based on ANN technique (Fig. 4). 8y, =di, (1 = di)wi®s,, 9)
_ Th?s predi_ctor is_athree-layered feed-forward perceptron. Es- AAL = AAAL | 480+ oAAL_, (10)
timation at timen is given by -
moo AwIY =2 A AL G + awiID (11)
o=y diy - wi® 3) . . .
p where A A?, and AA,, are auxiliary variables initialized ran-

] o ] domly; ~ is the learning coefficient) is the step length, and
wherew represents the weight coefficiem, is the number of 5.4, are the factors for the momentum terms. Weset 0.8
neurons in the hidden layer (Fig. 4), a#gis the outputofthe y _ 79 5 — 09 anda = 0.9 in our system according to

ith neuron in the hidden layer Weng’s simulation research [1¢], is an adaptive factor that
k affects the converging speed, and it is calculated as
diy=f | Y g -wy 4 _ ko
== 1 + Ko -1,
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wheren,, is approximately the energy gf, in the window 100 . . -

k 50 p
N X
M= Uhowr  m#O. (13) “n OWWWWWWM
m=—k L N L L L . . .

-50
1o IS a constant derived from training. It is the convergenc 1000 1, 2 3, 4, 5. 6, ! 8, gl )
factor when energy,, is zero. After optimizing by the “golden sob
section method” [28] with the training dafa, is setto 0.00005. g

n o

For the nonstationary componest, we set a dynamic

threshold of the amplitude based on moving average techniq 50, 1' 2' 3‘ : : : .
The threshold of theth pointT'h,, is calculated by 100 : : , 4| 5[ GI 7[ 8[ 9. )
Thy, =Thy,—1 X £+ fabs(2, — Aver,) x (1 —=&) (14) . 50] .
z
where¢ is the regression factor. We seléct= 0.9967 after noo '
optimizing with the training datafabs() means absolute value; BT 2 s 4 s & 7 s 9 10
Awer, is the moving average value of nonstationary output )
Aver,, = Averp_1 x £+ 2, x (1 =&). (15) Fig. 5. Result of stationary and nonstationary components separation.

is the raw EEG,z,, is the nonstationary componeny, is the stationary
It should be noted that the threshdld,, and moving average component after smoothing. Nonstationary component consists of sharp
nsients and high amplitude slow waves. Stationary component consists of
vaIL_Je Aver,, do not refresh when the wave excee_ds_ _th_reshoﬁf atively low-amplitude slow waves.
until the wave falls below the threshold again. The initialization
of Th,, and Aver,, can both be set to the mean value of a rela- land has b aull lied to th vsis of
tively smooth segment iA, . signal and has been successfully applied to the analysis of EEG

If any wave in2, exceeds the threshold, the episode will bEt9]—{21] and other biological signals [29].
recorded, and the original EEG data in this episode will then beD'SCrete Wave_let transform (DWT) is widely used be(_:ause
sent to the analytical stage for further analysis. it demands relatively less computation compared to continuous

For the stationary patt,, we first smooth it by averaging wavelet transfprm (CW_T). The main _Iimitation of .DWT is the
roughness of its scale increment which doubles itself between
) o two adjacent levels. However, CWT can achieve finer scale sam-
9n =3 Z Yn—k- (16) pling so it is able to analyze signal with higher frequency reso-
lution and that is why we adopt it in our EEG system.
Again, a dynamic amplitude threshold is adopted to decideCWT of time series:(¢) is defined as
which segment ofy,, should be recognized as the low ampli- -
tude slow wave and sent to the analytical stage. The dynamiccwT{z(t); a, b} = 1 / a(t)* <ﬂ> dt  (17)
threshold is calculated in the same way as that for nonstationary N a
outputz,.
Fig. 5 shows a segment of the original EE3 with the corre-
sponding nonstationary component and the stationary com-

ponent after smoothingy,. It is clear that sharp transients an By varying the wavelet scale, wavelet transform decom-

h'gh amphtude' slow waves have been sgparated into the n Oses the signat(t) into different frequency bands according
stationary section, whereas the low-amplitude slow waves hgye

. . . . the value ofs; largera corresponds to lower frequency but
been separated into the stationary section. Background EE (gader field of view, whereas smallercorresponds to higher

suppressed and slow epileptic waves become more prominﬁgauency but narrower field of view.

n lthe s(;gn?lg? ('?tgh' 5)'ff. : ¢ orelimi . . The computation load of calculating CWT directly from its
n order to test e efliciency of preliminary screening, e'gl'Hefinition (17) is quite demanding. So fast algorithm of it is nec-

1-h-long 16-channel EEG records from eight typical epilept ssary. Some fast CWT algorithms have been developed, such
patients were processed. The results were compared with fhe

report made by human experts. According to this test, all tlﬂﬁetrhg;r?;?;gef] on chirped Z transform [30], and that based on
1018 sharp transients and 9117 out of the 9398 slow waves wer e have pro.posed afast CWT algorithm based on the Mellin
detected by the preliminary screening stage. In this stage, [pe

detection rate of slo ave was 97.0%. and the detection r %nsform, which calculates wavelet coefficients of different
' W wave w 70 ! %Q:ales simultaneously at a given time instant [32], whereas

\c/)\fazlIrtehdeuisgetg“;bvc\)/i\tlzzt\)l/\;as 97.3%, whereas the data VOIurSf?ler. algorithms calcqlate wavelgt coefficients of different
: time instants consecutively at a given scale [30], [31], [33].
Since the data have been segmented into different length after
preliminary screening stage, it is more appropriate to compute
Wavelet transform is a multiresolution analysis tool that camavelet transform by the first approach. Only two inverse
disclose the characteristics of the signal in joint time-frequen&FTs and one FFT are needed for each calculation. A detailed
domain. It is quite suitable for processing of nonstationadiscussion about this algorithm can be found in [32].

k=—4

wherey(t) denotes the mother wavelet™indicates complex
conjugateq represents the chosen wavelet scalig,the time-
éhifting parameter.

I1l. WAVELET TRANSFORM
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100 : — . At every time pointt, its value is dynamically adjusted in a
RAWEEG 0| . | I A ‘ similar way as equations (14) and (15)
100 e . ) i n o om(y ng n _
20 s 100 150 200 250 wi(t) = wip(t — 1) X &+ fabs(w"(t) — Aver™(t)) x (1 (2%))
scate1 9 | wherew™(t) is the wavelet coefficientsiver™(t) is the moving
-5 — : x w average value of wavelet coefficients in scale level
50 50 100 150 200 250
ScALES O Aver™(t) = Aver™(t — 1) x E+w"(t) x (1 =&).  (21)
5l T ) ‘ ‘ | The regression factaf is set to 0.9933 based on our training
50 _ 50 100 150 200 250 data.
SCALE16 0 | The background amplitude’;.(¢) and moving average value
_5‘ , _ ‘ ‘ ‘ | Awver™(t) do not refresh when the wave exceeds background
50 50 100 150 200 250  until the wave falls below the background amplitude again. The
SCALE2S 0 ~initialization of w:(¢) and Aver™(t) can both be set to the mean
‘ | value of a relatively smooth segmentr? (¢).
':0 _ 50 1¢0 1 5:30 200 250 Wavelet transform is also an effectiye way to rejecf[ artifacts.
_ After the transform, many artifacts will only appear in one or
SCALE 32 0" ' two scales, but they will not appear in as many adjacent scales
-56 ‘ ; ‘ : as epileptic waves do. Therefore, the artifacts can be rejected
50 100 150 200 250

from the signal if multiscale information is employed.
From above processing, the three basic components of
Fig. 6. EEG signal is decomposed by wavelet transform. High-frequengpyileptic waves have been decomposed into three different
components appear in smaller scales, low-frequency components appeaétj&ms of scales; hence the subsequent processes can be

larger scales. . L
designed individually for each group.

Thirty-two scales are used to decompose the EEG segments V. FEATURE EXTRACTION AND ARTIFICIAL
selected by the preliminary screening stage. The scale parameter NEURAL NETWORK

a is sampled geometrically as .
A. Feature Extraction

If the wavelet coefficients of the predefined scales are to be
analyzed further, some feature parameters of the wavelet coeffi-
cients must be extracted first. These parameters will then act as
whereq is the ratio between adjacent levels. It is set to 1.06 e input of the ANN. ANN will decide whether the suspicious
our system, thus, the scales span from 1toa = 6.45, which  wave is similar to epileptic wave and how great the similarity is.
are wide enough to cover all the useful frequency componentsy/e use waveform features of wavelet coefficients rather than

a=q", n=1~31 (18)

in EEG. wavelet coefficientper seor raw EEG data directly as the input
Marr wavelet is selected as the mother wavelet, which is def ANN. Because EEG waveforms are quite different from pa-
fined as tient to patient, if we use the wavelet coefficients or raw EEG

data as input, it is almost impossible for the network to cluster
(19) these various waveforms. Ket al. [17] have concluded that
spike detection using raw EEG data as input of ANN is unlikely
;St% be feasible under current computer technology.
Feature parameters are defined as the following (Fig. 7).

pl) Relative amplitude 1RA;,, and RA1,4): Voltage differ-

P(t) = (1 —2)e /2,

Fig. 6 shows the result of wavelet transform. The topmo
curve is an original record of EEG with epileptiform discharge.
It is decomposed into three basic components (spikes, shar o
waves, and slow waves) by CWT. The curves below the topmost ~ €NC€ between the peak and valleys of a wave divided by
one are wavelet coefficients in different scales. It can be clearly e background amplitude (the subscupstands for the
seen that as the scales increase, the frequency components of ascending branch and the subscdfior the descending
EEG are resolved in an orderly way—from high frequencies to branch)
low frequencies. RAv = lacal/wr(p), RAia= lacs|/wr(p) (22)

After wavelet transform, spikes are prominent in the eight
lowest scales (scale index 0-7), sharp waves appear in the eight
medium scales (scale index 4-11), and slow waves appear in the . . .
four higher scales (scale index 24-27). Different thresholds are background af“p"t“de is calculated using (20) and.(21).
set for these scales. If any wave exceeds the threshold, it will be2) R_elatlve amplitude 245, and RA?”):. The p_otent!a_l
picked out for further processing. difference between t_he peak and turning points divided

We use background amplitude of wavelet coefficients as the by background amplitude
threshold. In thesth scale the background is denoted:gs(t). RAy, = |lacp|/ w}(p), RAz = lacge|/wi(p). (23)

wherew’:(p) is the background amplitude of wavelet co-
efficients at the time when the wave reaches the peak. The
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Output

WAB
X1 X Yiv *a1 X Koy v Xnva o Xnm
Fig. 7. Feature parameters as the input of ANN. Different sets of paramet
are used for different types of wave. Scale 1 Scale 2 Scale N

. N . . Fig. 8. Structure of ANN. Number of input nodes depends on the type of
Turning point is defined as the point where the SIOp(.?pileptic wave. For spike, number of input nodes ix®B = 56; for sharp

decreases more than 50% compared to that of the pwgwe, itis 7x 8 = 56; and for slow wave, it is 4 4 = 16.

ceding point for the first time (starting from the peak

point). wave and the corresponding basic epileptiform waves. In prac-
3) Duration 1(W1): Number of data points between the stafice, it is more reliable to give the likelihood of a wave being

and the end points of the wave, showrVEs g in Fig. 7. epileptic than declaring yes-or-no categorically. Hence, in our
4) Duration 2(W»): Number of data points between the twasystem linear output is used to take the place of binary output,

turning points of the wave, shown &8p ; in Fig. 7. so that the value of the output gives the proximity of the input
5) Duration 3 (W3): Distance between the two “half-max-waye.

imum points.” Half-maximum points are points where the |n order to gain linear output from the network, some scholars

amplitudes are half ofzc 4| or [acp|. Refer toWrg in - set the desired output by statistical distance of the training

Fig. 7. data [34]. The training process is not reliable because the
6) SharpnesgSH): Sharpness is the changing rate of thgesired output does not reflect the pattern of input objectively.

slope at the peak point. If the peak point is denotefl,as This paper proposes an efficient “twice-learning” algorithm to

SH can be calculated as achieve linear output from the three-layer BP neural network
and to reduce human interference.
SH = [sl(k+1) — sl(k —1)]/2 (24)  The structure of the ANN is illustrated in Fig. 87 is the
) . number of scales we use; it is also the number of hidden layer
wheresi(k) is the slope at point nodes. (i.e., for spikesV = 8, sharp wavesN = 8, slow
n " waves:N = 4). M is the number of input parameter (i.e., for
sl(k) = [w"(k + 1) —w"(k — 1)]/2. (25 spikes:M = 7, sharp wavesM = 7, slow waves:M = 4),

X, is thejth parameter extracted from thi scale. The order
of the parameters is the same for all scales.

The “twice-learning” algorithm is described as following:

In the first step, the desired outputs are binary and set by
human expert. The networks update their coefficients using
(26) weighted BP learning algorithm. When the training is finished,
the networks have the ability to separate the data roughly into

w" (k) means thé:th point of the wavelet coefficients of
scalen.

7) Slope §LP; and SLP,): Slope of the lines connecting
the peak and the two turning points (refer to Fig. 7)

SLP, = CN/DN, SLP,=CM/EM.

0 groups. The outputs will be very close to one or zero. The

For the three basic epileptic components, we use differd; . o
er a wave approximates the pattern of an epileptic wave,

set of parameters. For spike and sharp wave, seven param

(RAsw, RAsq, SLP,, SLPy, Wy, Wa, SH) are used; for slow '€ 1arger will be the output, andce versa
wave, four parametersi(y, Ws, RAy,, RA1y) are used. In the second step, the outputs of all the “positive” samples

are sorted, then the maximum and minimum output, denoted as
B. Artificial Neural Network and “Twice-Learning” Algorithm Pm_“ and_Pmi“’ are found. For a "positive sample \.Nlth qutput
o ] _y, its desired output for the second round training is defined as

Three similar MLP neural networks are designed respectively P
for detection of spikes, sharp and slow waves. Each has different PO, = _Y =~ Tmin
number of input nodes, hidden layer nodes and one output node. Prnax = Prin
The inputs of the network are those feature parameters acquifduas, all the “positive” samples will have desired output falling
above and the output indicates the proximity between the inpntthe range 0.55 to 1.

% 0.45 + 0.55. (27)
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Similarly, we find the maximum and minimum output of More heuristic rules can be easily added into our system so
“negative” samples, denoted &6,.x and N, then define it is possible to mimic the judging procedure of human expert
the desired output as better in the future. The above rules are implemented in fol-

lowing three aspects.

Yy — Nmin

NO, = x 0.45. (28)

Nuax — Nmin A. Integration of Multiscale Information
The network is then trained again using the new desiredComponents of different frequency have been separated into

output; the coefficients are also updated by weighted erent scales after wavelet transform. This step integrates
Iearnin'g algorithm. the waves of these scales. All of the waves whose output from

The “twice-learning” algorithm proved to be efficient forneural network exceeds the threshold 0.35 are put into a queue;

training. The first step provides objective output for the secorf¥™M€ adjacent waves are then combined into complex waves

step, and increases the convergence speed as well. The setdity SPike-and-slow complex or sharp-and-slow complex);
e overlapped waves are classified accordingly.

step enables the network to produce linear output accordiﬁ%m
to the pattern of input data. It successfully avoids the artificial i ) .
interference in training, thus maintaining the objectivity anf- Spatial Information Integration
congruity of the output. Eye blinks can be distinguished in the frontal channels. If
After the two steps, the network can give the proximity of aome high-amplitude slow waves are found simultaneously
wave to a specific epileptiform wave: spike, sharp or slow wavi channels Fpl and Fp2, and their durations are longer than
All waves having proximity higher than 0.35 are sent to expe200 ms, they will be rejected as eye blinks.
system for further analysis. We choose such a low thresholdEpileptic waves in different channels always have similar pat-
mainly for two reasons: 1) epileptic waves often appear in mukrns, but their peaks usually do not appear exactly at the same
tiple channels; in some channels the waves have high amplitutie, i.e., a time delay could be found between the two peaks.
but in some other channels they may have low amplitudes, thiisus, we could discriminate between transients caused by elec-
their proximity might be small; and 2) some parts in completrode movement and real epileptic transients based on this fact.
waves are not prominent, e.g., spike may be covered by sldvsudden movement of electrode may cause a waveform similar
wave or slow wave can be very small in complex waves. Thegesharp wave in many channels, but their peaks usually appear
waves will not be missed by a low threshold strategy and eixall channels at the same time point. If this case occurs, and
pert system will then enhance their proximity according to theround this transient there is no other epileptic waves, then it
heuristic rules. should be rejected as artifacts caused by electrode movement.
If a wave has similar patterns in many channels (e.qg., their
starts, ends, and peaks are very close) then its proximity should
be increased by 0.2. Conversely, if a wave has no “image” in

Expert system fully exploits the spatial and tempordther channels, its proximity will be decreased by 0.2. The in-
contextual information in order to reject artifacts. Severgrease or decrease of the proximity is not arbitrarily set but de-
heuristic rules are combined to distinguish artifacts (such @i§led by training. Itis chosen to be 0.2 on our training data.
eye blink, electrode movement or other artifacts) from epileptic Somex waves overlap with sharp waves in frequency domain
waves. Thereafter, some isolated waves are reconstructed Fidhey may cause confusion. Fortunatelyvaves mostly ap-
spike-and-slow complex or sharp-and-slow complex. Fina“gﬁ‘ar in channels O1 and O2, hence, when more than three adja-
the decision is made as to whether the wave is a kind ent sharp waves appear in these two channels, and their prox-
epileptic wave and, if so, to which kind it belongs. The rulelnity are notvery large, then they should be rejected agves.
we have used are listed as follows.

1) Adjacent spike and slow wave or adjacent sharp and si§w US€ Of Temporal Context

V. EXPERT SYSTEM

wave should be combined into complex waves. Proximity of a wave will be increased if it has temporal sup-
2) Slow waves in Fpl and Fp2 are more likely to be eygort for its existence, otherwise the proximity will be decreased.
blinks. If a spike has rather small proximity, but it is followed by a
3) Epileptic waves usually do not achieve their peaks exact#jow wave with large proximity, then the proximity of the spike
at the same time in all channels. should be increased by 0.2.
4) Epileptic waves usually do not appear solely, neither spa-If a sharp wave or spike appears solely and there is no other
tially nor temporally. epileptiform waves in the previous or following 1 s, then prox-

5) « wave is easy to be confused with sharp waves, butimity of this wave should be decreased by 0.2.
mainly occurs in O1 and O2, and may appear to be con-If a slow wave in frontocentral area has high-amplitude long-
secutive sharp waves. duration biphasic waveform with overriding consecutive small
6) K-complex during sleep is a kind of slow wave busharp waves, we will take this slow waveldscomplex in sleep
usually overridden by spindles (appear to be consecutistage and eliminate it from epileptic waves.

small sharp waves here). During the sleep hours according to patient's diary, the
7) Normal slow waves in sleep stages should not be falsdlyreshold for slow waves will be set to 0.95. This is because
judged. slow waves can be normal waveforms in sleep stages. Thus,
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only a small number of slow waves with very high likelihood TABLE |
during sleep hours will be picked out for human review. STATISTICS OF SYSTEM PERFORMANCE
Every suspicious wave should be tested again according
the definition of spike, sharp wave and slow wave. Only thos Nopkesand | ComplexWaves |  SiowWaves | Faie | Eplepte Waves
agree with the definition in duration, amplitude, and symmetr g | """ | e s
will be retained. Tor
Total (];)\)rtrt:c‘llé' Total (]SOI:C(;N(); Total gortrc(:tlé/ I;:lse De}t{ectinn
VI‘ RESULTS ctecte etectes etecte ate ate

The system was evaluated using 8-channel clinical EE!
records of 81 epileptic subjects. The data were chosen fro
the patient databases of four hospitals; none of them had be
used previously in system development, and the data were r
pre-selected in any way. Thus, the testing procedure can refle -
the real performance of our system in clinical application. I L I I - 1005 | 101% | 882%

The records ranged from 4 to 24 h in length, totaling mort n—
than 800 h. The data contained all types of epileptiform activ Iu | @e | swo e | | wRe | smo | w6 | s
ities, including focal and nonfocal epileptic EEG, e.g., single
spikes, spike bursts, spike-slow wave bursts, sharp waves, slow
wave bursts, and sharp-slow waves, all in various amplitudes.
Almost all kinds of artifacts that commonly appear in AEEG The result show our system can distinguish most events even
can be found in our data, such as artifacts caused by eye blitilg sharp transients are few in EEG.
muscle strengthen, electrode movement, etc. The placement dbroup 2 contained many spikes, sharp waves, and complexes,
the electrodes was identical for every record. But the records difid also large amount of slow waves. Records in this group
fered in length and were gathered by different EEG machinegided up to 350 h in length, including 48 841 events. 98.0%
so we had converted the data into same format. The samplitfghe sharp transients were detected correctly. Detection rate of
rate was 100 Hz and A/D conversion precision was 8 bit.  all epileptic events was as high as 92.4% with a false detection

For comparison with analysis of human experts, the datate of 6.4%. Though slow waves have been paid much atten-
were subjected to computer analysis and human review indien, sharp transients have not been neglected at all. The results
pendently. Reports made by human experts were taken asshew our system is very sensitive to sharp transients.
reference. In the computer analysis, all events having proximityGroup 3 contained many artifacts that usually hamper the au-
larger than a threshold were reported and compared with tlsnatic detecting system. However, in our system, most of these
result of human review. The threshold was set to 0.80 to achiedifacts can be recognized and rejected. Records in this group
best compromise between sensitivity and specificity on oamounted to 60 h in length. The detection rate in this group
training data (except the slow waves during sleep stages, feached 88.2% and the false rate was 10.1%. It can be inferred
these waves the threshold was 0.95). It might change slighthat the system rejects artifacts satisfactorily.
for other training data. We also provided a user interface in ourThe overall detection rate of the spikes, sharp waves and com-
system which enables the user to multiply a factoto the plexes was 98.0% when the results of the three groups were
threshold, thus the final threshold will Be8 x 1. By adjusting combined. It also proved satisfactory for slow wave recognition
the factory) the EEGer can manually change the threshold ®yen though they are harder to be detected compared to sharp
achieve better result on a specific subject when it is needed.transients; the detection rate of slow wave was 86.8%. Overall,

1 1756 1665 3349 3304 81329 71886 4801 56% 8N

2 3%40 3800 31683 31114 13218 10201 3112 64% RNA%

We divided these 81 records into three groups. 90.0% of the epileptic waves were correctly discriminated and

Group 1) Records dominated by slow waves. classified, wherea§ the false rate was kept_at.6.1%.

Group 2) Records dominated by spikes, sharp waves, andVe plot the receiver operating characteristic (RO(;) curve to
complexes. evaluate the system performance on the yvhole testing data set.

Group 3) Records contaminated by many artifacts. In our system, the final threshold for detection of epileptic waves

Table | illustrates the result of the analysis. is 0.8 x 1. We vary the factot) step by step in the range [0.35,

In Group 1, spikes and sharp waves rarely appeared. S|6V€5] and calculate the detection rate and false rate in every step.

waves became the most important indication of events. As sidl€n: We obtain the ROC cugve as shown in Fig. 9. The area
waves have been fully considered in our system, the epil 1der ROC curve is about 95%. The area under ROC curve re-

tiform activities can be correctly pointed out. Records in thi ects the tradeoff between sensitivity and specificity; a larger

group amounted to 450 h in length, in which human exper‘?éea indicates better discrimination ability of the system [35].
found 86 434 events. 88.9% of these events were detected by 'ar9€ area under our ROC curve has proved the system can

ours system and the false detection rate was 5.6%. The false}f. high sensitivity and high specificity at the same time.
tection rate was calculated as The proposed system also has an attractive processing speed.

In our test, the average speed is about 60 times faster than
False Positive Events recording speed on a general purpose PIII400 Pentium PC.

False Detection Rate (All Events Found By Human Experts)Thus, a 24-h-long record can be processed in 24 min. It should
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1 . - - - - T . taken for epileptic waves. Moreover, in sleep stage |, stage I,
and also in REM sleep,wave will frequently appear in EEG; in
sleep stage Il and 1\§ wave will appear with high amplitude.

0.8f 1 These waves can hardly be discriminated from epileptic slow
waves because of their similar morphologies and distributions.
Thus, a better system should analyze the sleep stages and adjust
0.6 1  thejudge standard according to different sleep status. However,
automatic sleep staging is also a difficult problem and there is

0.91 4

0.71 b

Detection Rate

0.5f . : .
still a long way to go before it can be solved. Currently, we have

0.41 1  started the effort to integrate an automatic sleep staging system

A | with the epileptic EEG detection system to obtain a more reli-
able result.

0.2r 1 Maintaining high flexibility of the system is also an impor-

o1k ] tantpoint. Waveforms may differ greatly between patients or be-

tween different periods of the same patient, so the system must
0 01 o2 03 04 05 06 07 o8 os 1 beflexible in order to retain efficiency under various circum-
False Rate stances. In the present system, we use adaptive prediction in the
preliminary screening stage and set self-adaptive thresholds at
Fig. 9. ROC curve for final threshold. The area under ROC curve is arouN@10us points of the analytical stage. The system adjusts its pa-
0.95. The large area under the ROC curve indicates the system can have h@meters dynamically when the characteristics of the input data
sensitivity and high specificity at the same time. change. Thus it is more robust for long-term data processing and
for data from different subjects.

be noted the speed also depends on the proportion of epileptitBegin in roughness, end in fineness” is an important phi-
waves in the raw EEG. losophy in our design. An efficient strategy in our system is
reducing data before the detailed analysis. According to our
statistics, the preliminary screening reduces about 75% of the
data; this guarantees the system a fast processing speed. When

In this paper, we set up a scheme for automatic detectiontedining the ANN, the “twice-learning” algorithm also validates
epileptic EEG. Multiple up-to-date signal-processing methodise philosophy. In the first step, the training dataset are roughly
are integrated into one system so that they can complement rdivided into two main groups, in the second step, a linear output
tually to improve the overall performance of the system. THe given to indicate the likelihood of a wave to be epileptic. This
system also makes good use of spatial and temporal contextuathodology guarantees the fast convergence of network while
information while taking care of all kinds of epileptiform wavesachieving linear output.
including spike, sharp wave, slow wave, and wave complex. TheBased upon these ideas, improvement of our system is just
output of the system indicates the type of the wave and the likgnader way.
lihood of the wave to be epileptic.
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