
Author Manuscript – Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 334–338, 2019. 

https://doi.org/10.1109/ISBI.2019.8759484 
Copyright © 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org. 

 

EXPECTED LABEL VALUE COMPUTATION 

FOR ATLAS-BASED IMAGE SEGMENTATION 
 

Iman Aganj and Bruce Fischl 

 

Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School 

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology 
 

ABSTRACT 

 

The use of multiple atlases is common in medical image 

segmentation. This typically requires deformable 

registration of the atlases (or the average atlas) to the 

new image, which is computationally expensive and 

susceptible to entrapment in local optima. We propose 

to instead consider the probability of all possible 

transformations and compute the expected label value 

(ELV), thereby not relying merely on the transformation 

resulting from the registration. Moreover, we do so 

without actually performing deformable registration, 

thus avoiding the associated computational costs. We 

evaluate our ELV computation approach by applying it 

to liver segmentation on a dataset of computed 

tomography (CT) images. 

 

Index Terms—Image segmentation, atlas, expected 

label value (ELV). 

 

1. INTRODUCTION 

 

Supervised automatic image segmentation is often a 

central step in medical imaging studies, enabling the 

analysis of specific regions of interest (ROIs). A 

training dataset is provided in supervised image 

segmentation, containing images that are each 

accompanied with manually delineated ROI labels. A 

new image is then segmented using the information 

from the training dataset. Two popular approaches to 

supervised image segmentation use multiple atlases [1-

3] and deep neural networks [4]. In atlas-based 

segmentation of a new image, atlas images are (or a 

mean template image is) deformably registered to the 

new image. The manual labels are then propagated into 

the new image space using the computed 

transformations, and fused to form the new labels. 

Being computationally very demanding, 

deformable image registration of the atlas images to the 

new image is the bottleneck of atlas-based 

segmentation. To improve computational efficiency, it 

has been proposed to use only a subset of atlas images 

[5], albeit at the price of discarding a portion of the 

available information. 

The transformation resulting from registration 

guides the label propagation from the atlas to the new 

image. Being an iterative non-convex optimization, 

image registration is prone to entrapment in local 

optima, potentially leading to erroneous propagation of 

the labels. Moreover, equally reasonable 

transformations may produce close values for the 

registration objective function (within its margin of 

error). Thus, even if the global optimum is found, 

choosing it as the single correct transformation would 

mean disregarding valuable information provided by 

other potentially valid transformations. Uncertainty in 

registration has been incorporated into Bayesian 

segmentation by approximating the marginalization 

over registration parameters via Markov Chain Monte 

Carlo techniques [6], which, even though efficiently 

implemented, would further increase the computational 

costs. Local measures of uncertainty in deformable 

registration have also been used to improve the 

sensitivity of the label propagation in atlas-based 

segmentation [7]. 

In this work, we present a new atlas-based image 

soft-segmentation method that produces the expected 

value of a label at each voxel of the new image, while 

considering the probability of possible transformations, 

without explicitly sampling from the transformation 

distribution. Although accounting for deformations, we 

do not run deformable registration in either the training 

or the testing stages. We create a single image from the 

training data, which we call the key. Then, for a new 

image (after affine alignment), we compute the 

expected label value (ELV) map simply via a 

convolution with the key, which is efficiently 

performed using the fast Fourier transform. The soft 
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segmentation provided by the ELV map can be further 

used to initiate a subsequent hard-segmentation 

procedure. We validate our approach through liver 

segmentation experiments on abdominal computed 

tomography (CT) images. 

In the following, we describe the proposed method 

in detail (Section 2) and present experimental results 

(Section 3) along with some concluding remarks 

(Section 4). 

 

2. METHODS 

2.1. Segmentation from a Single Atlas 

 

Let 𝐼:ℝ𝑑 → ℝ be the 𝑑-dimensional image to be 

segmented, and 𝐽:ℝ𝑑 → ℝ an atlas image with the same 

contrast as 𝐼, for which the manual label of a specific 

ROI has been provided as 𝐿:ℝ𝑑 → {0,1}. For the new 

image 𝐼, we would like to compute the expected value 

of the ROI label, 𝐸:ℝ𝑑 → [0,1], which is a measure of 

likelihood of each voxel belonging to the ROI. 

In traditional atlas-based image segmentation, the 

label 𝐿 is propagated into the space of 𝐼 as 𝐿 ∘ 𝑻∗, where 

for the transformation 𝑻∗ the similarity between 𝐼 and 

𝐽 ∘ 𝑻∗ is maximal.1 Here, instead, we compute the 

expected value of the propagated 𝐿, while considering a 

probability for each possible transformation in 𝕋 ≔
{𝑻:ℝ𝑑 → ℝ𝑑}, as follows: 

 

𝐸 ≔ ∫Pr(𝑻|𝐼, 𝐽) (𝐿 ∘ 𝑻)d𝑻
𝕋

. (1) 

 

Equation (1) computes the ELV as an integral over 

the space of all transformations, which could be 

regarded as multiple (theoretically an infinite number of 

nested) integrals over the space of parameters 

representing 𝑻. For free-form deformation, as 

considered here, Eq. (1) in fact includes a 𝑑-

dimensional integral – with respect to the value of 𝑻(𝒙) 
– for each 𝒙 ∈ ℝ𝑑. 

The probability of the transformation given both the 

new and atlas images is proportional to: 

 

Pr(𝑻|𝐼, 𝐽) ∝ Pr(𝐼, 𝐽|𝑻) Pr(𝑻), (2) 

 

where the two right-hand-side factors correspond to the 

image similarity and the transformation regularity, 

respectively. For the former, we opt to use the inner 

product of the image and the transformed atlas, since it 

                                                 
1 We denote vector-valued variables in bold. 

is expected to be higher when the two images are well 

aligned: 

 

Pr(𝐼, 𝐽|𝑻) ∝ ∫ 𝐼(𝒙)(𝐽 ∘ 𝑻)(𝒙)d𝒙
ℝ𝑑

. (3) 

 

This would be the cross correlation of 𝐼 and 𝐽 if 𝑻 

were only a translation. It is, however, well established 

that the cross correlation reflects the degree of 

alignment more effectively when only the phase 

information of the image is included [8, 9], which is 

how in practice we will proceed, as described in Section 

2.4. 

Regarding the probability of the transformation, we 

will use the common Tikhonov prior on the regularity 

of the deformation field: 

 

Pr(𝑻) ∝ 𝑅(𝑻) ≔ 𝑒
−
1
2𝜎2

∫ ‖∂𝑻(𝒛)−𝕀‖𝐹
2d𝒛

ℝ𝑑 , (4) 

 

where 𝜕𝑻 is the Jacobian matrix of 𝑻, 𝕀 is the 𝑑 × 𝑑 

identity matrix, and the constant parameter 𝜎 represents 

a prior on the magnitude of the deformations. By 

combining the above equations, the ELV at voxel 𝒚 will 

be: 

 

𝐸(𝒚) ∝ ∫ 𝐼(𝒙)d𝒙∫(𝐽 ∘ 𝑻)(𝒙)(𝐿 ∘ 𝑻)(𝒚)𝑅(𝑻)d𝑻
𝕋ℝ𝑑

. (5) 

 

Since 𝒙 and 𝒚 are fixed in the inner integral, we 

make the change of variables 𝑻(𝒛) = 𝑺(𝒛 − 𝒙). Note 

that such a global shift will not change either the 

regularization, i.e. 𝑅(𝑻) = 𝑅(𝑺), or the domain of the 

inner integral, 𝕋. Consequently: 

 

𝐸(𝒚) ∝ ∫ 𝐼(𝒙)d𝒙∫(𝐽 ∘ 𝑺)(𝟎)(𝐿 ∘ 𝑺)(𝒚 − 𝒙)𝑅(𝑺)d𝑺
𝕋ℝ𝑑

 

= ∫ 𝐼(𝒙)𝐴(𝒚 − 𝒙)d𝒙
ℝ𝑑

, 
(6) 

 

or: 

 

𝐸 ∝ 𝐼 ∗ 𝐴, (7) 

 

where ∗ denotes the convolution, and we define the key, 

𝐴, as: 

 

𝐴(𝒙) ≔ ∫(𝐽 ∘ 𝑺)(𝟎)(𝐿 ∘ 𝑺)(𝒙)𝑅(𝑺)d𝑺
𝕋

. (8) 



Next, we write the transformation 𝑺 as the sum of a 

global translation 𝚫 ∈ ℝ𝑑 and a deformation 

(displacement) field 𝒖 ∈ 𝑈: 

 

𝑺(𝒙) = 𝒙 + 𝚫 + 𝒖(𝒙), (9) 

 

where 𝑈 ≔ {𝒖:ℝ𝑑 → ℝ𝑑| ∫ 𝒖(𝒙)d𝒙
ℝ𝑑

= 𝟎} is the set 

of translation-free displacement fields. The regularity 

prior is now: 

 

𝑅(𝑺) = �̃�(𝒖) ≔ 𝑒
−
1
2𝜎2

∫ ‖𝜕𝒖(𝒛)‖𝐹
2d𝒛

ℝ𝑑 . (10) 

 

We combine the above three equations, and 

separate the integral over the space of all 

transformations into an integral over possible 

translation-free deformations and an integral over 

possible translations: 

 

𝐴(𝒙) ∝ ∫ �̃�(𝒖)d𝒖∫ 𝐽(𝚫 + 𝒖(𝟎))𝐿(𝒙 + 𝚫 + 𝒖(𝒙))d𝚫
ℝ𝑑𝑈

. (11) 

 

Note that this is a linear change of coordinates, 

hence d𝑺 ∝ d𝒖d𝚫 (with the ratio independent of 𝑺). 

With 𝒖 and 𝒙 being constant in the inner integral, we 

make the change of variables 𝚫 = �̃� − 𝒖(𝒙) − 𝒙, 

leading to: 

 

𝐴(𝒙) ∝ ∫ �̃�(𝒖)d𝒖∫ 𝐽(�̃� − 𝒖(𝒙) + 𝒖(𝟎) − 𝒙)𝐿(�̃�)d�̃�
ℝ𝑑𝑈

 

= ∫�̃�(𝒖)𝐵(𝒖(𝒙) − 𝒖(𝟎) + 𝒙)d𝒖
𝑈

, 
(12) 

 

where 𝐵 can be pre-computed from the atlas as: 

 

𝐵(𝒙) ≔ (𝐽(−𝒙) ∗ 𝐿(𝒙))(𝒙). (13) 

 

As can be seen, 𝐵 is obtained by reversing the atlas 

image, blurring it by the label, and shifting it so the label 

ROI is roughly at the center. It can be verified that: 

 

lim
𝜎→0

𝐴 = 𝐵. 

                                                 
2 This change of variables (integrating with respect to 𝜕𝒖 

instead of 𝒖) is linear due to the linearity of the differential 

operator 𝜕, as well as invertible due to the translation-free 

constraint on 𝒖. We continue with the relaxing assumption 

that ∂𝒖 has independent elements. Nevertheless, for 𝑑 ≥ 2, 

the variable set 𝜕𝒖 is redundant and has a larger dimension 

than 𝒖 does, with elements that are interdependent given the 

linear relationship 𝛁 × 𝜕𝒖 = 𝟎. As a result, the integral must 

Next, we will analytically estimate the key, 𝐴, as a 

function of 𝐵 for 𝜎 > 0. 

 

2.2. Expectation over the Space of Deformations 

 

Combining Eqs. (10) and (12) leads to: 

 

𝐴(𝒙) ∝ ∫𝐵(𝒖(𝒙) − 𝒖(𝟎) + 𝒙)𝑒
−
1
2𝜎2

∫ ‖𝜕𝒖(𝒛)‖𝐹
2d𝒛

ℝ𝑑 d𝒖
𝑈

. (14) 

 

For simplicity, let us for now assume that 𝒙 lies on 

the positive half of the first Cartesian coordinate axis, 

i.e., 𝒙 = 𝑥𝒗1, where 𝒗1 is the unit vector in the direction 

of the first axis, and 𝑥 ≥ 0. We also define the line 

segment 𝑄𝑥 ≔ {𝑡𝒗1|0 ≤ 𝑡 ≤ 𝑥}. Accordingly: 

 

𝒖(𝒙) − 𝒖(𝟎) = ∫ 𝜕𝒖(𝒙′)d𝒙′

𝑄𝑥

= ∫ 𝜕1𝒖(𝑡𝒗1)d𝑡
𝑥

0

, (15) 

 

where 𝜕1𝒖 is the partial derivative of 𝒖 in the direction 

of 𝒗1. Therefore: 

 

𝐴(𝑥𝒗1) ∝ ∫ 𝐵 (𝑥𝒗1 +∫ 𝜕1𝒖(𝑡𝒗1)d𝑡
𝑥

0

)
∂𝑈

× 𝑒
−
1
2𝜎2

∫ ‖𝜕𝒖(𝒛)‖𝐹
2d𝒛

ℝ𝑑 d(𝜕𝒖). 

(16) 

 

Note that we made further simplification by 

integrating over the space of the Jacobian of the 

deformation, ∂𝑈, instead of the space of the 

deformation, 𝑈, itself.2 

In Eq. (16), the only values of 𝜕𝒖 on which 𝐵 

depends are 𝜕1𝒖(𝒛) for 𝒛 ∈ 𝑄𝑥. Thus, we separate the 

integral into the product of three integrals, the first one 

being: 

 

𝐴(𝑥𝒗1) ∝ ∫ 𝐵 (𝑥𝒗1 +∫ 𝜕1𝒖(𝑡𝒗1)d𝑡
𝑥

0

)

∂1{𝒖:𝑄𝑥→ℝ
𝑑}

× 𝑒
−
1
2𝜎2

∫ ‖𝜕1𝒖(𝑡𝒗1)‖2
2d𝑡

𝑥

0 d(𝜕1𝒖), 

(17) 

 

be taken with respect to an independent subset of the elements 

of 𝜕𝒖 that includes the (independent) set 𝜕1𝒖(𝑄𝑥). One can 

verify that our independence assumption implies a less strict 

regularity prior, as it would be equivalent to taking 

∫‖𝜕𝒖(𝒛)‖𝐹
2d𝒛 of �̃�(𝒖) (as well as the main integral in Eq. 

(16)) only with respect to the independent subset of the 

components of 𝜕𝒖. 



and the second and third integrals are: 

 

∫ 𝑒
−
1
2𝜎2

∫ ‖𝜕1𝒖(𝒛)‖2
2d𝒛

ℝ𝑑\𝑄𝑥 d(𝜕1𝒖)

∂1{𝒖:ℝ
𝑑\𝑄𝑥→ℝ

𝑑}

× ∫ 𝑒
−
1
2𝜎2

∫ ‖∂2,…,𝑑𝒖(𝒛)‖𝐹
2
d𝒛

ℝ𝑑 d(∂2,…,𝑑𝒖)

∂2,…,𝑑𝑈

, 

(18) 

 

which are integrals of normal distributions and 

therefore constant, hence not included in the expression 

for 𝐴(𝑥𝒗1) in Eq. (17). 

Calculation of 𝐴(𝑥𝒗1) can be made notationally 

easier by approximating the inner integrals in Eq. (17) 

as Riemann sums. We divide [0, 𝑥] into 𝑛 equal 

intervals (𝑛 → ∞), with d𝑡 ≈ 𝑥 𝑛⁄ , and define: 

 

𝒒𝑘 ≔
𝑥

𝑛
𝜕1𝒖(

𝑘

𝑛
𝑥𝒗1). (19) 

 

The integral is now approximated as: 

 

𝐴(𝑥𝒗1) ∝ ∫ 𝐵 (𝑥𝒗1 +∑𝒒𝑘

𝑛

𝑘=1

)
ℝ𝑛𝑑

× 𝑒
−

1
2𝑥𝜎2 𝑛⁄

∑ ‖𝒒𝑘‖2
2𝑛

𝑘=1 d𝒒1…d𝒒𝑛. 

(20) 

 

This is, in fact, 𝑛 consecutive convolutions of 𝐵 

with a 𝑑-dimensional Gaussian, 

 

𝐴(𝑥𝒗1) ∝ [𝐵(𝒛) ∗ 𝐺 (𝒛|𝟎,
𝑥
𝑛
𝜎2𝕀) ∗ … ∗ 𝐺 (𝒛|𝟎,

𝑥
𝑛
𝜎2𝕀)

⏞                      
𝑛

]

𝒛=𝑥𝒗1

, (21) 

 

where 𝐺(∙ |𝝁, Σ) represents the Gaussian function with 

the mean 𝝁 and the co-variance matrix Σ. Given that 

convolution of 𝑛 identical Gaussians results in a 

Gaussian with 𝑛 times the variance, we have: 

 

𝐴(𝑥𝒗1) ∝ [𝐵(𝒛) ∗ 𝐺(𝒛|𝟎, 𝑥𝜎
2𝕀)]𝒛=𝑥𝒗1 . (22) 

 

We now exploit the rotational invariance of the 

Gaussian in Eq. (22) and that of the Frobenius norm of 

the Jacobian in Eq. (14), to generalize Eq. (22) for any 

𝒙 ∈ ℝ𝑑: 

 

𝐴(𝒙) ∝ [𝐵(𝒛) ∗ 𝐺(𝒛|𝟎, ‖𝒙‖2𝜎
2𝕀)]𝒛=𝒙. (23) 

 

Despite our use of the convolution notation in Eq. 

(23), 𝐴 is not computed via an actual convolution, 

because the co-variance matrix of the Gaussian kernel 

varies depending on 𝒙, where the result of the 

convolution is evaluated. 

One can see that the key, 𝐴, is an inhomogeneously 

blurred version of 𝐵, where the size of the blurring 

kernel increases with the square root of the Euclidean 

distance from the center of 𝐵 – i.e., the region 

corresponding to the label ROI (see Section 2.1). 

Blurring a region in 𝐴 decreases its contribution to soft 

segmentation by removing its high-frequency 

components prior to the convolution in Eq. (7). This 

means that the proposed ELV takes local deformations 

into account by giving a smaller weighting to regions in 

the atlas image that are farther from the ROI, making 

the information in such far areas less important. 

 

2.3. Multiple Atlases 

 

In case 𝑁 atlases (affinely normalized in the same 

space) with manual labels are available, we will write 

Eq. (1) in the same fashion, as: 

 

𝐸 ≔
1

𝑁
∑∫Pr(𝑻|𝐼, 𝐽𝑖) (𝐿𝑖 ∘ 𝑻)d𝑻

𝕋

𝑁

𝑖=1

, (24) 

 

where 𝐽𝑖 and 𝐿𝑖 are the 𝑖th pair of atlas and manual label 

images, respectively. This will result in the same 𝐸 and 

𝐴 as in Eqs. (7) and (23), with the only difference being 

the definition of 𝐵: 

 

𝐵(𝒙) ≔
1

𝑁
∑(𝐽𝑖(−𝒙) ∗ 𝐿𝑖(𝒙))(𝒙)

𝑁

𝑖=1

. (25) 

 

Note that even in the case of multiple atlases, 𝐴 is a 

single image that is pre-computed from the training 

data. 

 

2.4. Implementation 

 

To create the key, 𝐴, we first ensure that the 𝑁 training 

images are represented roughly in the same space; and 

if not, we affinely align them. We then generate 𝐵 from 

Eq. (25), while for each convolution 𝐽𝑖(−𝒙) ∗ 𝐿𝑖(𝒙) we 

compute: 

 



ℱ−1 {
𝐽𝑖
∗(𝝎)

|𝐽𝑖(𝝎)|
�̂�𝑖(𝝎)}, (26) 

 

where the hat sign and ℱ−1 represent the Fourier and 

inverse Fourier transforms, respectively. By only 

keeping the phase information of the image, we create 

a sharper probability distribution for the aligning 

transformation in Eq. (3) [8, 9]. In addition, removing 

the magnitude of 𝐽𝑖 has an intensity normalization 

effect, which prevents 𝐵 from giving a different 

weighting to an atlas image due to its global intensity 

scaling. Next, we compute 𝐴 voxel-wise from Eq. (23), 

by multiplying and summing 𝐵 with a varying 

discretized Gaussian kernel. 

To segment a new image, 𝐼, we first make sure that 

it is affinely aligned to the atlas space (if not, align it to 

the mean atlas image), and then compute the ELV map 

from Eq. (7) as follows: 

 

𝐸(𝒚) ∝ ℱ−1 {
𝐼(𝝎)

|𝐼(𝝎)|
�̂�(𝝎)}. (27) 

 

Once the initial ELV map is obtained, it can be 

refined by recalculating Eq. (27) while this time 

prioritizing the initial soft-segmented area. In our 

experiments, for instance, we used weighted versions of  

𝐴(𝒙) and 𝐼(𝒙), as 𝐴(𝒙)𝐺(𝒙|𝟎, 𝑠2𝕀) and 𝐼(𝒙)[𝐸(𝒚) ∗
𝐺(𝒚|𝟎, 𝑠2𝕀)]𝒚=𝒙, respectively, where the size of the 

Gaussian window (2𝑠) was half the image size. 

Given that using the phase image discards some 

image intensity information, one can further augment 

the ELV volume with image intensities by multiplying 

𝐸 by the intensity prior, 

 
Pr(𝐿𝐼|𝐼, {(𝐽𝑖 , 𝐿𝑖)}) ∝ Pr(𝐼|𝐿𝐼 , {(𝐽𝑖, 𝐿𝑖)}) Pr(𝐼|{(𝐽𝑖 , 𝐿𝑖)})⁄ , 

 

where 𝐿𝐼 represents the unknown label image 

corresponding to 𝐼. Pr(𝐼|𝐿𝐼 , {(𝐽𝑖, 𝐿𝑖)}) and 

Pr(𝐼|{(𝐽𝑖, 𝐿𝑖)}) can be approximated by Gaussian 

functions of the intensity values of 𝐼, with their 

parameters estimated from either the atlases, or the 

image itself using the initial ELV map. Several other 

post-processing steps are possible after this soft 

segmentation [1]. In our evaluation, we will use the 

thresholded ELV map as a seed region for subsequent 

hard segmentation. 

The proposed model accounts for large translations, 

as well as local deformations, even though we do not 

run any deformable registration. As for rotation and 

global scaling, the local deformations can cover a small 

amount of them, and we do not expect a large amount 

given the initial affine alignment. 

 

3. RESULTS AND DISCUSSION 

 

We evaluated our ELV computation method on the 

training dataset of the public Liver Tumor 

Segmentation (LiTS) Challenge [10], which includes 

contrast-enhanced abdominal CT images with manually 

delineated labels for the normal tissue and lesions in the 

liver, provided by various clinical sites. We considered 

the entire (healthy and lesion) organ label in our 

experiments. 85 subjects passed our inclusion criteria, 

mainly the slice thickness being included in the header 

and no larger than 2mm. The images were resampled in 

the space of the first image to (1.6mm)³ isotropic 

resolution, so they were all of the size 248×248×323. 

For each image, we created the key from the 

remainder of the images (i.e. the 84 “atlases”) following 

Eqs. (25) and (23), with a value of 𝜎 = 0.1, which was 

heuristically optimized during initial benchmarking. 

Next, as described in Section 2.4, we computed the ELV 

map in two levels (Figure 1, left). A supplementary 

video of the ELV maps for all subjects is available 

(http://nmr.mgh.harvard.edu/~iman/ELV_ISBI19_iman.pptx). 

To create a liver mask from the map (here and in the 

next steps), we thresholded the map to keep a voxel 

subset of the size of an average liver, which we 

estimated as the mean liver volume from the 84 atlas 

labels, and then refined the mask via morphological 

operations, by: eroding it using a spherical structuring 

element with the radius of 5 voxels, keeping the largest 

connected component, dilating it, and filling the holes. 

For the intensity-prior map, we used the initial ELV 

mask and its dilated version (by a sphere of radius 50) 

to estimate the mean intensity for the liver and the 

image, respectively. For stability, we estimated the 

standard deviation of the intensities from the 84 other 

subjects and their manual labels. Next, we modulated 

the ELV with the intensity prior (Figure 1, middle), 

created a new mask, and further refined it with an 

updated intensity mean estimated from this mask. The 

Dice overlap coefficients of these masks with the 

manual labels had a median of 0.86 across subjects 

(mean: 0.82 ± SEM 0.01). Note that the ELV map is 

computed via a simple linear convolution operation on 

the (phase) image, as opposed to mainstream supervised 

segmentation methods that include deformable 

registration or sophisticated trained neural networks. 

Next, we used each mask to initialize an 

unsupervised segmentation algorithm based on the local 

http://nmr.mgh.harvard.edu/~iman/ELV_ISBI19_iman.pptx


center of mass [11]. For the intensity-prior map to be 

smooth, we computed it from a blurred version of the 

test image using a Gaussian with the standard deviation 

of 5 voxels. We ran the segmentation for 500 iterations 

with different values for the edge weighting parameter 

𝛼 (ranging from 100 to 2000), while not using the 

random phase (see [11] for details). We chose the value 

of 𝛼 yielding the maximal Dice coefficient for each 

subject, leading to optimal Dice scores with a median of 

0.91 (mean: 0.86 ± 0.02).3 Figure 1 illustrates the ELV 

and the segmentation results for the representative 

subject with the median Dice score. The seed mask – 

provided by the ELV – was indispensable to segment 

the liver with this unsupervised method. 

For comparison, at the time of the submission of 

this article, the LiTS challenge website [10] reported 

Dice values for the healthy liver tissue ranging from 

0.84 to 0.97, with many of the methods using deep 

learning. Note that here we aimed to estimate the entire 

organ label (healthy + lesion), therefore could not use 

the website for evaluation. Among those results of ours 

with lower (entire-organ) Dice scores, lesion regions 

were frequently the culprit, as the intensity-prior map, 

                                                 
3 On the other hand, when we fixed 𝛼 for the entire dataset, 

we obtained (suboptimal) Dice scores with a median of 0.88 

for the best fixed 𝛼 (global Dice: 0.83, mean Dice: 0.79 ± 

0.02). Because of the heterogeneity of this dataset that came 

although generally improving the segmentation, had 

partially excluded some of those regions. 

 

4. CONCLUSIONS 

 

We have introduced a new approach to supervised soft-

segmentation, which computes the expected label value 

(ELV) of an ROI from an image using a training dataset 

of atlases. The proposed method does not perform 

costly deformable registration, thereby also avoiding 

entrapment in local optima. We have evaluated our 

ELV computation technique in liver segmentation from 

CT images. 

 

  

from various sites worldwide, the optimal 𝛼 varied 

substantially across subjects, implying that a fixed value for 

it would not be suitable for the entire dataset. 

 
Figure 1.  CT image (blue) of the representative subject corresponding to the median segmentation Dice score. The slice with 

the largest cross section with the manual label is shown.  Left: The ELV map of the liver (yellow).  Middle: The ELV map 

modulated by the intensity prior (yellow).  Right: The manual label (green), the segmentation result (red), and their overlap 

(yellow). 
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