Estimation of the Spatial Gradient of the MR Image from the Diffusion Profile
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Synopsis

In the course of diffusion, water molecules experience varying values for the relaxation-time property
of the underlying tissue, a factor that has not been accounted for in diffusion MRI (dMRI) modeling.
Accordingly, we derive a relationship between the diffusion profile measured by dMRI and the spatial
gradient of the image, and subsequently estimate the latter from the former. We test our hypothesized
relationship via dMRI of the human brain (a public in vivo image and an acquired ex vivo stimulated-echo
image), showing statistically significant results that may be due to our model and/or the confounding factor
of “fiber continuity”.

Summary of Main Findings

We found the image gradient estimated from our diffusion model to be significantly related to that
estimated via the finite-element method, which may validate our model and/or be due to the confounding
factor of “fiber continuity”.

1. INTRODUCTION

The diffusion MRI (dMRI) signal is proportional to the mean proton density (PD) inside a voxel,
weighted according to tissue relaxation times,' and attenuated by water molecule displacement. The
Stejskal-Tanner pulsed gradient spin-echo sequence” applies two gradient pulses G of duration &, separated
in time by A. Molecules located at x, during the first pulse and ending up at X = X + u at the second pulse
presumably contribute the following to the signal S¥(q) at voxel v, where q :=yé8 G with y the
gyromagnetic ratio:*

$*@) = [ wlio)p(o) Pr(Elio) e T azodi = | w(Eo)p(Eo)d, [ Pr(ali) e am
v v
= S§PY (@),

where p is PD, and the relaxation-time weighting w(x,) = [1 — exp(— TR /T, (x,))] exp(— TE /T, (x,))
for the repetition/echo times TR /TE and the tissue longitudinal/transverse relaxation times Ty (Xo) /T, (Xo).
So =Aw)j = fvw(fo)p(fo)dfo is the baseline non-diffusion-weighted (b=0) image, where (-)} denotes
p-weighted sum inside v. PV := F{P"}, where P (1) = Pr(u) = Pr(ui|X,) is the probability of diffusion
with the amount u (a.k.a. ensemble average propagator) during the effective diffusion time 7 := A — §/3,

and presumed® independent of X, € v.
For model simplification, the relaxation-time properties of tissue have been assumed to be constant

along the diffusion trajectory. Since the spatial distribution of molecules diffusing from X, to X is their
initial density, the integrals are weighted by p(x,). However, w is expected to vary in the tissue continuum

(1)
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along the molecule’s trajectory, and the integrals must be weighted by an effective value of w experienced
by the molecules going from X, to X, rather than by w(x,) as done in state-of-the-art dMRI models.

We propose a more comprehensive model that considers, and enables the estimation of, within-voxel
variation of tissue relaxation time. We evaluate our model via experiments on standard in vivo dMRI from
the Human Connectome Project (HCP)* and stimulated-echo (STE)>® ex vivo dMRI (with long 7).

2. METHODS

We propose using an effective value for w to account for its change during a molecule’s diffusion. For
particles going from X, to X, instead of weighting the integrals in Eq. (1) by the initial value w(x,), we use
the midpoint value, w(l/z(y?o + J?)) =w(xy + Yeu) = w(xy) + %LV, w(x,) - u, with V, the spatial
gradient, leading to:

Y (4) = J Ww(Eo)p (o) d, J P(i)e-TTdii + 14 J Vo (F)p () di, - J AP (@)e-1di

v v
= WIEF(P@)} + (VW) - FEP @) @
= S§PY(Q) + %i{V,w)y - VPP (Q),
where we used F{uP (%)} = iV,P?(g), with V,, the gradient w.r.t. §. Note that w is linearly approximated

within only the molecule’s trajectory (not the entire voxel).
Equation (2) allows estimation of (V,w)}, from the (antipodally symmetric) signal magnitude:

@)1 = SEPY @1+ (I - %7, log PP (@)’ o

T e - T N2

= §ye-Td"D qJ1 + (2" pvg)

where LV := (V,w);/Sg and we used the Gaussian diffusion approximation, PY(q) = exp(—1q"D?q),
with DV the symmetric diffusion tensor’. Note that, since LV is squared in Eq. (3), its orientation (rather
than direction) can be estimated. The effect size, i.e. the relative change in log(|S¥(q)|/Sy) due to L”, can

- 12
be seen to be of magnitude 1/z‘L'||L"|| 5 ID?|| and order of 10™* in the white matter for typical dMRI. This

can be increased using a long 7, e.g. via the STE> sequence (to avoid long TE and thus preserve SNR).

To estimate D¥ and L” at each voxel, we fit the diffusion signal for all g to Eq. (3) via the pattern search
algorithm®, while initializing DV with standard DTI’. We then compute (as gold standard) the discrete

counterpart of I’ ie gradient of log S§ (approximating log wV) via the finite-element approach. To assess
orientational accuracy, we compute the acute angle (0 < 6 < 90°) between the orientations of the estimated

L? and its discrete counterpart, which should be small if the two are similarly oriented. The null hypothesis

(Z” randomly oriented w.r.t. its discrete counterpart) predicts the sin @ distribution, with mean of 57.3°
(1 rad) and median of 60°.

3. RESULTS

We first applied our estimation to the white-matter mask of the 1% HCP subject (Figure 1). The

estimated LV and its discrete counterpart (Figure 2) resulted in a 8 distribution (Figure 3) with mean and
median of 53.3° and 54.0°, respectively, i.e. significantly small compared to chance (57.3° and 60°). A two-
sided sign test revealed a p-value of 0 (to be interpreted cautiously, as neighboring-voxel correlation
violates the test’s independence assumption).



Since LV affects the signal more strongly at longer diffusion times, we then used an STE>* research
sequence to scan an ex vivo brain hemisphere with T = 1 s (Figure 4). The computed 6 had the mean and
median of 57.1° and 59.6°, respectively, i.e. still smaller than by chance (p=0.002).

4. DISCUSSION AND CONCLUSION

We have derived a relationship between the diffusion profile and the spatial gradient of tissue
relaxation-time weighting, which might be helpful in learning about tissue microstructure or for dMRI
super-resolution. We observed the effect of our hypothesized relationship on in vivo and ex vivo dMRI,
which was weaker for the STE image, possibly because of its larger voxel size, less specific white-matter
mask, lower SNR inherent to ex vivo imaging and STE, and inadequacy of the Gaussian model at long 7.
Although we approximated log w” with log S, both expectedly have similar variation orientations, related
to the same underlying tissue.

A confounding factor in validating our hypothesis is a characteristic of the fibrous tissue, called fiber
continuity,”"! which implies smooth variation of a fiber bundle along its orientation, hence smaller image
gradient along high-diffusion orientations. Our significant results, therefore, may be due to our model
and/or fiber continuity. Further evaluation, e.g. on phantoms constructed without fiber continuity, is
necessary to conclusively validate our hypothesis, which is a subject of our ongoing research.
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Figure 1. Orientation distribution functions (ODFs) reconstructed'? from the diffusion tensors of the HCP
subject and visualized in the white-matter mask using the “CSA-ODF and Hough Tractography” Matlab
toolbox®3. The dataset contained images acquired at the 1.25 mm isotropic resolution along 270 diffusion
gradient directions with b-values ranging from 990 to 3010 s/mm?, in addition to 18 averaged b=0 images
shown in the background, and the diffusion time of 40 ms.




Figure 2. Color-coded orientation of the spatial gradient of the image for the HCP subject, estimated:
from the diffusion signal using the proposed approach (left) and from the b=0 image via the finite-element
approach (right). Consistent fiber orientations are observed mostly in single-fiber regions, which may be
due to the limitations of the DTI model at regions with fiber crossing.



The HCP subject

T
10000 - | [ Histogram of 6 oot 7
=== mm Null-hypothesis distribution

9000

8000

7000

6000

Count

5000

4000

3000

2000

1000

0 10 20 30 40 50 60 70 80 90
0(°)
Figure 3. Histogram of the acute angle () between the orientations of our diffusionally estimated spatial

gradient and the gold-standard discretely computed gradient (blue), and distribution of 8 under the null
hypothesis (dashed red curve).
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Figure 4. Diffusion tensor ODFs of the ex vivo human brain hemisphere. We scanned the sample on a 3T
scanner (MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany) using the STE sequence with the
long diffusion time of 1 second (TE/TR=33/26200 ms), the b-value of 1000 s/mm?, and isotropic voxel size
of 2 mm. To increase the signal-to-noise ratio (SNR), we acquired and averaged 8 repetitions of each of
the 256 diffusion directions, as well as 320 repetitions of the b=0 image (shown in the background).



