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Synopsis 

 

In the course of diffusion, water molecules experience varying values for the relaxation-time property 
of the underlying tissue, a factor that has not been accounted for in diffusion MRI (dMRI) modeling. 

Accordingly, we derive a relationship between the diffusion profile measured by dMRI and the spatial 

gradient of the image, and subsequently estimate the latter from the former. We test our hypothesized 

relationship via dMRI of the human brain (a public in vivo image and an acquired ex vivo stimulated-echo 
image), showing statistically significant results that may be due to our model and/or the confounding factor 

of “fiber continuity”.  

 

 

Summary of Main Findings 

 

We found the image gradient estimated from our diffusion model to be significantly related to that 

estimated via the finite-element method, which may validate our model and/or be due to the confounding 

factor of “fiber continuity”. 

 

 

 

1. INTRODUCTION 

 

The diffusion MRI (dMRI) signal is proportional to the mean proton density (PD) inside a voxel, 

weighted according to tissue relaxation times,1 and attenuated by water molecule displacement. The 

Stejskal-Tanner pulsed gradient spin-echo sequence2 applies two gradient pulses �⃑ of duration �, separated 

in time by Δ. Molecules located at �⃑� during the first pulse and ending up at �⃑ = �⃑� + 	
⃑  at the second pulse 

presumably contribute the following to the signal ��
�⃑� at voxel �, where �⃑ ≔ ���⃑ with � the 

gyromagnetic ratio:3 
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where � is PD, and the relaxation-time weighting �
�⃑�� ≔ &1 − exp
− ,- ,.
�⃑��⁄ �0 exp
− ,1 ,2
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for the repetition/echo times ,- ,1⁄  and the tissue longitudinal/transverse relaxation times ,.
�⃑�� ,2
�⃑��⁄ . 

��� ≔ 〈�〉5� ≔ 6 �
�⃑���
�⃑��d�⃑��  is the baseline non-diffusion-weighted (b=0) image, where 〈⋅〉5�  denotes 

�-weighted sum inside �. #$� ≔ ℱ8#�9, where #�
	
⃑ � ≔ Pr
	
⃑ � ≅ Pr
	
⃑ |�⃑�� is the probability of diffusion 

with the amount 	
⃑  (a.k.a. ensemble average propagator) during the effective diffusion time ; ≔ Δ − � 3⁄ , 

and presumed3 independent of �⃑� ∈ �. 

For model simplification, the relaxation-time properties of tissue have been assumed to be constant 

along the diffusion trajectory. Since the spatial distribution of molecules diffusing from �⃑� to �⃑ is their 

initial density, the integrals are weighted by �
�⃑��. However, � is expected to vary in the tissue continuum 



along the molecule’s trajectory, and the integrals must be weighted by an effective value of � experienced 

by the molecules going from �⃑� to �⃑, rather than by �
�⃑�� as done in state-of-the-art dMRI models. 

We propose a more comprehensive model that considers, and enables the estimation of, within-voxel 

variation of tissue relaxation time. We evaluate our model via experiments on standard in vivo dMRI from 

the Human Connectome Project (HCP)4 and stimulated-echo (STE)5,6 ex vivo dMRI (with long ;). 
 

 

2. METHODS 

 

We propose using an effective value for � to account for its change during a molecule’s diffusion. For 

particles going from �⃑� to �⃑, instead of weighting the integrals in Eq. (1) by the initial value �
�⃑��, we use 

the midpoint value, �>½
�⃑� + �⃑�@ = �
�⃑� + ½	
⃑ � ≅ �
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gradient, leading to: 
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where we used ℱ8	
⃑ #
	
⃑ �9 = B∇�#$�
�⃑�, with ∇� the gradient w.r.t. �⃑. Note that � is linearly approximated 

within only the molecule’s trajectory (not the entire voxel). 

Equation (2) allows estimation of 〈∇��〉5�  from the (antipodally symmetric) signal magnitude: 

|��
�⃑�| = ��� #$�
�⃑�C1 + >D
⃑ � ⋅ ½∇� log #$�
�⃑�@2
 

≅ �����H�
⃑ IJK�
⃑ C1 + L;D
⃑ �MN��⃑O2, 
(3) 

where D
⃑ � ≔ 〈∇��〉5� ���⁄  and we used the Gaussian diffusion approximation, #$�
�⃑� ≅ exp
−;�⃑MN��⃑�, 

with N� the symmetric diffusion tensor7. Note that, since D
⃑ � is squared in Eq. (3), its orientation (rather 

than direction) can be estimated. The effect size, i.e. the relative change in log
|��
�⃑�| ���⁄ � due to D
⃑ �, can 

be seen to be of magnitude ½;PD
⃑ �P2
2‖N�‖ and order of 10�S in the white matter for typical dMRI. This 

can be increased using a long ;, e.g. via the STE5,6 sequence (to avoid long ,1 and thus preserve SNR). 

To estimate N� and D
⃑ � at each voxel, we fit the diffusion signal for all �⃑ to Eq. (3) via the pattern search 

algorithm8, while initializing N� with standard DTI7. We then compute (as gold standard) the discrete 

counterpart of D
⃑ �, i.e. gradient of log ��� (approximating log ��) via the finite-element approach. To assess 

orientational accuracy, we compute the acute angle (0 ≤ U ≤ 90°) between the orientations of the estimated 

D
⃑ � and its discrete counterpart, which should be small if the two are similarly oriented. The null hypothesis 

(D
⃑ � randomly oriented w.r.t. its discrete counterpart) predicts the sin U distribution, with mean of 57.3° 
(1 rad) and median of 60°. 

 

 

3. RESULTS 

 

We first applied our estimation to the white-matter mask of the 1st HCP subject (Figure 1). The 

estimated D
⃑ � and its discrete counterpart (Figure 2) resulted in a U distribution (Figure 3) with mean and 

median of 53.3° and 54.0°, respectively, i.e. significantly small compared to chance (57.3° and 60°). A two-
sided sign test revealed a p-value of 0 (to be interpreted cautiously, as neighboring-voxel correlation 

violates the test’s independence assumption). 



Since D
⃑ � affects the signal more strongly at longer diffusion times, we then used an STE5,6 research 

sequence to scan an ex vivo brain hemisphere with ; = 1 s (Figure 4). The computed U had the mean and 

median of 57.1° and 59.6°, respectively, i.e. still smaller than by chance (p=0.002). 

 

 

4. DISCUSSION AND CONCLUSION 

 

We have derived a relationship between the diffusion profile and the spatial gradient of tissue 

relaxation-time weighting, which might be helpful in learning about tissue microstructure or for dMRI 
super-resolution. We observed the effect of our hypothesized relationship on in vivo and ex vivo dMRI, 

which was weaker for the STE image, possibly because of its larger voxel size, less specific white-matter 

mask, lower SNR inherent to ex vivo imaging and STE, and inadequacy of the Gaussian model at long ;. 

Although we approximated log �� with log ���, both expectedly have similar variation orientations, related 

to the same underlying tissue. 
A confounding factor in validating our hypothesis is a characteristic of the fibrous tissue, called fiber 

continuity,9-11 which implies smooth variation of a fiber bundle along its orientation, hence smaller image 

gradient along high-diffusion orientations. Our significant results, therefore, may be due to our model 

and/or fiber continuity. Further evaluation, e.g. on phantoms constructed without fiber continuity, is 
necessary to conclusively validate our hypothesis, which is a subject of our ongoing research. 
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Figure 1.  Orientation distribution functions (ODFs) reconstructed12 from the diffusion tensors of the HCP 

subject and visualized in the white-matter mask using the “CSA-ODF and Hough Tractography” Matlab 

toolbox13. The dataset contained images acquired at the 1.25 mm isotropic resolution along 270 diffusion 

gradient directions with b-values ranging from 990 to 3010 s/mm², in addition to 18 averaged b=0 images 

shown in the background, and the diffusion time of 40 ms. 

  



 
Figure 2.  Color-coded orientation of the spatial gradient of the image for the HCP subject, estimated:  

from the diffusion signal using the proposed approach (left) and from the b=0 image via the finite-element 

approach (right). Consistent fiber orientations are observed mostly in single-fiber regions, which may be 

due to the limitations of the DTI model at regions with fiber crossing. 

  



 
Figure 3.  Histogram of the acute angle (U) between the orientations of our diffusionally estimated spatial 

gradient and the gold-standard discretely computed gradient (blue), and distribution of U under the null 

hypothesis (dashed red curve). 

  



 
Figure 4.  Diffusion tensor ODFs of the ex vivo human brain hemisphere. We scanned the sample on a 3T 

scanner (MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany) using the STE sequence with the 

long diffusion time of 1 second (TE/TR=33/26200 ms), the b-value of 1000 s/mm², and isotropic voxel size 

of 2 mm. To increase the signal-to-noise ratio (SNR), we acquired and averaged 8 repetitions of each of 

the 256 diffusion directions, as well as 320 repetitions of the b=0 image (shown in the background). 

 


