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ABSTRACT 

Aligning images in a mid-space is a common approach to ensuring that deformable image registration is 

symmetric – that it does not depend on the arbitrary ordering of the input images. The results are, however, 

generally dependent on the mathematical definition of the mid-space. In particular, the set of possible 

solutions is typically restricted by the constraints that are enforced on the transformations to prevent the 

mid-space from drifting too far from the native image spaces. The use of an implicit atlas has been proposed 

as an approach to mid-space image registration. In this work, we show that when the atlas is aligned to each 

image in the native image space, the data term of implicit-atlas-based deformable registration is inherently 

independent of the mid-space. In addition, we show that the regularization term can be reformulated 

independently of the mid-space as well. We derive a new symmetric cost function that only depends on the 

transformation morphing the images to each other, rather than to the atlas. This eliminates the need for anti-

drift constraints, thereby expanding the space of allowable deformations. We provide an implementation 

scheme for the proposed framework, and validate it through diffeomorphic registration experiments on 

brain magnetic resonance images. 

  

Keywords: Mid-space-independent (MSI) registration, deformable image registration, implicit atlas, 

symmetry, inverse-consistency. 
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1. Introduction 

The computation of a set of dense spatial correspondences among images – a.k.a. image registration – is a 

central step in most population and longitudinal imaging studies. Linear transformation is often not 

sufficient to account for cross-subject anatomical variation or temporal changes in an individual anatomy, 

thereby making deformable image registration (Sotiras et al., 2013) a necessary part of most analysis 

pipelines. The importance of registration accuracy in neuroimaging is evident from the literature; for 

instance, inaccurate alignment has been shown to lead to incorrect diagnosis (Reuter et al., 2014) and 

ineffective radiotherapy (Castadot et al., 2008) of tumors, and the inability to detect early effects of 

Alzheimer’s disease (Cuingnet et al., 2011; Fischl et al., 2009). 

In deformable registration, the choice of the reference space in which the images are compared affects the 

outcome, making the resulting deformation field dependent on this choice. Choosing the native space of 

one of the input images (say, the first image) as the reference breaks the symmetry of pairwise registration, 

meaning that reversing the order of the input images will produce different spatial correspondences. Such 

an inverse-inconsistency has been shown to be related to biased errors introduced into the estimation of 

Alzheimer’s disease effects (Fox et al., 2011; Hua et al., 2011; Thompson and Holland, 2011; Yushkevich 

et al., 2010),  daily dose computation (Yang et al., 2008) and auto re-contouring (Ye and Chen, 2009) in 

radiation therapy, the quantification of lesion evolution in multiple sclerosis (Cachier and Rey, 2000; Rey 

et al., 2002), and the measurement of longitudinal changes (Reuter et al., 2012). Local volume changes in 

the deformation field and discretization artifacts are two major contributors to registration asymmetry. 

Pairwise registration has been proposed to be symmetrized by minimizing the average of two cost functions, 

each using one input image as the reference space (Cachier and Rey, 2000; Christensen and Johnson, 2001; 

Tagare et al., 2009; Trouvé and Younes, 2000), which unfortunately results in the non-uniform integration 

of the image mismatch measure in the native spaces of the input images (Aganj et al., 2015b). 

In a different approach to achieve symmetry in pairwise registration, both images are deformed and 

compared in an abstract reference space chosen to be “in between” the native spaces of the images, known 

as the mid-space (Ashburner and Ridgway, 2013; Avants and Gee, 2004; Beg and Khan, 2007; Chen and 

Ye, 2010; Joshi et al., 2004; Lorenzen et al., 2004; Lorenzen et al., 2006; Lorenzi et al., 2013; Noblet et al., 

2008, 2012; Škrinjar et al., 2008; Yang et al., 2008; Ye and Chen, 2009). Since both images are treated 

equally, mid-space registration is invariant with respect to the ordering of the images. Such approaches 

essentially minimize their cost functions with respect to two transformations that take the two input images 

to the mid-space. However, without additional constraints, this increases the degrees of freedom of the 

problem twofold, compared to the end result of pairwise registration that is the one transformation taking 

one input image to the other. Furthermore, if the images are compared in the mid-space, the optimization 

algorithm is given the liberty to update the mid-space so as to decrease the cost function without necessarily 

changing the resulting image-to-image transformation. For example, the algorithm can shrink the regions 

with mismatching image intensities to make the deformed images look more similar in the mid-space, 

without necessarily making them more similar in their native spaces. To alleviate these issues, additional 

constraints are used to prevent the mid-space from drifting away from the native spaces of the two images. 

These anti-drift constraints, which are different from those regularizing the transformations, define the mid-

space. They typically either restrict the space of possible pair of transformations (resulting in fewer degrees 

of freedom), or penalize those values of the two transformations that move the mid-space away from the 

native spaces. The most common such constraints, proposed in the mid-space registration and atlas 
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construction literature, are restrictions on the two transformations to have opposite displacement fields 

(Aljabar et al., 2008; Bhatia et al., 2004; Bouix et al., 2010; Fonov et al., 2011; Guimond et al., 2000; Miller 

et al., 1997; Noblet et al., 2012; Studholme and Cardenas, 2004; Yang et al., 2008) or velocity fields 

(Ashburner and Ridgway, 2013; Grenander and Miller, 1998; Lorenzi et al., 2013). In large deformation 

models, geodesic averaging of the deformations has also been proposed, which preserves the desired 

properties of the transformations (Avants and Gee, 2004; Joshi et al., 2004; Lorenzen et al., 2006). The 

anti-drift constraints, however, can have the side effect of restricting the final image-to-image 

transformation, thereby causing the exclusion of some legitimate results (see Section 2.1 for examples). 

Furthermore, the choice of these constraints may affect the results by biasing the registration algorithm 

towards favoring a particular set of transformations. 

Unbiased atlas construction techniques can constitute mid-space registration, as the images are deformed 

to the atlas space (Ashburner and Ridgway, 2013; Hart et al., 2009; Joshi et al., 2004). In an atlas 

construction approach to image registration, the desired output is the deformation field, but not the auxiliary 

atlas. Consequently, one can analytically solve for the atlas in the cost function, leading to an implicit-atlas 

cost function that is minimized with respect to the image-to-atlas transformations. To that end, it was 

initially proposed to compare the deformed images to the atlas in the mid-space (Geng et al., 2009; Joshi et 

al., 2004). A better-justified generative model, however, progresses from the atlas to the images and 

compares the deformed atlas to the images in the native image spaces (Allassonnière et al., 2007; Ma et al., 

2008; Sabuncu et al., 2009). Taking advantage of this native-space atlas construction resolves the issue of 

susceptibility to shrinkage-type problems, leading to a proper implicit-atlas cost function for mid-space 

registration (Ashburner and Ridgway, 2013). Nevertheless, the registration still remains a function of two 

transformations taking the images to a mathematically defined mid-space. 

In this work, we derive the key fact that implicit-atlas registration has a data term that is inherently 

independent of the mid-space, and only depends on the overall image-to-image transformation. This implies 

that the individual image-to-atlas transformations are redundant and unnecessary to keep, and that anti-drift 

constraints are indeed not needed. We also show how to analytically solve the common Tikhonov 

regularization terms with respect to one of the image-to-atlas transformations. These lead us to a new cost 

function that, in contrast to the existing mid-space approaches, can be minimized directly with respect to 

the image-to-image transformation, with no anti-drift constraints. The proposed cost function is general and 

can be used with any deformation field parameterization, such as the displacement and the velocity fields. 

This article extends our preliminary conference version (Aganj et al., 2015a). In particular, we propose a 

new regularization term in addition to the data term (Section 2), evaluate our method more comprehensively 

on 3D brain magnetic resonance images (Section 3), propose the extension of our framework to group-wise 

deformable registration (Appendix A), and provide further details on the derivations and the 

implementation of the method (Appendix B & Appendix C). 

2. Methods 

2.1. Mid-space based registration 

We begin with a brief overview of mid-space based pairwise deformable registration. An extension of our 

framework to group-wise registration is suggested in Appendix A. Let 𝐼1, 𝐼2: 𝛺 → ℝ be the two 𝑑-
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dimensional input images to be registered, where 𝛺 ⊆ ℝ𝑑.1 The goal of pairwise deformable registration is 

to compute the regular transformation 𝑇: 𝛺 → 𝛺 that makes overlapping regions of 𝐼1 and 𝐼2 ∘ 𝑇 locally 

correspond to each other; a task that is often accomplished by minimizing a cost function with respect to 𝑇. 

In one popular approach, the image-to-image transformation 𝑇 is parameterized as 𝑇 = 𝑇2 ∘ 𝑇1
−1, where 𝑇1 

and 𝑇2 deform 𝐼1 and 𝐼2 to a mid-space (see Section 1 for references). The deformed images may be 

compared in the mid-space by minimizing a data term such as the common sum of squared differences 

(SSD) term, ∫ ((𝐼1 ∘ 𝑇1)(𝑦) − (𝐼2 ∘ 𝑇2)(𝑦))
2
d𝑦

Ω
 (Geng et al., 2009; Joshi et al., 2004).2 The mid-space data 

term is by definition invariant with respect to the ordering of the images; i.e., swapping 𝐼1 and 𝐼2 will swap 

𝑇1 and 𝑇2 in the produced set of transformations. 

With no additional constraints, the dimensionality of the mid-space registration problem (solving for 𝑇1 and 

𝑇2) is twice as large as the standard asymmetric problem (solving for 𝑇). Another drawback of this approach 

is that the mid-space can drift arbitrarily far away from the native spaces of the images due to large changes 

in 𝑇1 and 𝑇2, for instance through combination with a transformation 𝑆, as 𝑇1 ∘ 𝑆 and 𝑇2 ∘ 𝑆, which 

decreases the mid-space cost function without changing the final 𝑇 = (𝑇2 ∘ 𝑆) ∘ (𝑇1 ∘ 𝑆)
−1 = 𝑇2 ∘ 𝑆 ∘

𝑆−1 ∘ 𝑇1
−1 = 𝑇2 ∘ 𝑇1

−1. An example of this phenomenon is the situation where the optimization algorithm 

updates 𝑇1 and 𝑇2 in order to shrink the regions where the deformed images do not match, resulting in a 

decrease in the mid-space cost function, without necessarily changing the end result, 𝑇. To avoid this issue, 

additional constraints are often employed to keep the mid-space “close” to the native image spaces. Such 

constraints reduce the degrees of freedom and to some extent prevent the mid-space drift, however, at the 

expense of limiting our ability to model all possible transformations 𝑇. Examples of such anti-drift 

constraints and their limitations are as follows: 

 The transformations may be constrained to have zero-sum displacement fields, i.e. 𝑢1(𝑦) +

𝑢2(𝑦) = 0 where 𝑢𝑖(𝑦) ≔ 𝑇𝑖(𝑦) − 𝑦, resulting in the constraint 𝑇1(𝑦) + 𝑇2(𝑦) = 2𝑦 (or similarly 

the alternative constraint 𝑇1
−1(𝑥) + 𝑇2

−1(𝑥) = 2𝑥). Now let us consider the 2D case where the true 

transformation 𝑇 is a 180° rotation about the origin, i.e. 𝑇(𝑥) = −𝑥. By definition, 𝑇2(𝑦) =

(𝑇 ∘ 𝑇1)(𝑦), which leads to 𝑇1(𝑦) + 𝑇2(𝑦) = 0. This, however, cannot be simultaneously satisfied 

along with the constraint 𝑇1(𝑦) + 𝑇2(𝑦) = 2𝑦 by any 𝑇1 and 𝑇2. 

 

 The transformations may be forced to be the inverses of each other, i.e. 𝑇2 = 𝑇1
−1, either explicitly, 

or through opposite-sign velocity fields. Given that 𝑇 = 𝑇2 ∘ 𝑇1
−1, such a constraint leads to 𝑇 =

𝑇2 ∘ 𝑇2, meaning that 𝑇2 is the functional square root (half iterate) of 𝑇. However, Kuczma et al. 

(1990) have given examples of a 2D diffeomorphic function that does not have any functional 

square root (the authors’ Example 11.10.1), and a 1D diffeomorphic function that does not have a 

diffeomorphic functional square root (the authors’ Example 11.4.1). Accordingly, by using a 

transformation 𝑇2 to parameterize the solution as 𝑇 = 𝑇2 ∘ 𝑇2, the space of all diffeomorphic 

transformations 𝑇 will not be covered (even if 𝑇2 is not restricted to be diffeomorphic). 

                                                           
1 Multi-spectral images, 𝐼1, 𝐼2: 𝛺 → ℝ𝑝, 𝑝 > 1, can also be similarly incorporated in this framework. 
2 Throughout this article, we use the vectors 𝑥, 𝑦, and 𝑧 to denote the space of 𝐼1, the mid-space, and the space of 𝐼2, 

respectively. 
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Since there is no unique way to define the mid-space, the registration results, 𝑇, can depend on the choice 

of the anti-drift constraints imposed on 𝑇1 and 𝑇2. In fact, as seen above, some legitimate values of 𝑇 can 

never be reached due to such constraints. 

2.2. Implicit-atlas based registration 

2.2.1. Implicit-atlas data term 

Another approach to mid-space based pairwise registration is through constructing an unbiased atlas from 

the images (Ashburner and Ridgway, 2013; Hart et al., 2009; Joshi et al., 2004). In atlas construction, the 

observed images are assumed to be instances generated from a template image (atlas) with some geometric 

and intensity variation. Therefore, the problem reduces to finding an atlas, 𝐴: Ω → ℝ, and regular 

transformations 𝑇1 and 𝑇2, where 𝑇1
−1 and 𝑇2

−1 take the atlas from the mid-space to the native spaces of the 

images, in such a way that the deformed versions of the atlas resemble the observed images. The SSD data 

term to be minimized in such an optimization is sum of the (asymmetric) subject-atlas distance terms, as 

follows: 

 
�̃�(𝐼1, 𝐼2, 𝐴, 𝑇1, 𝑇2) ≔ ∫(𝐼1(𝑥) − (𝐴 ∘ 𝑇1

−1)(𝑥))
2
d𝑥

Ω

+∫ (𝐼2(𝑧) − (𝐴 ∘ 𝑇2
−1)(𝑧))

2
d𝑧

Ω

. (1) 

Comparing the images to the atlas in the physically meaningful native image spaces complies with the 

generative model assumption that the image is generated as a deformed version of the atlas (not vice versa), 

and that the Gaussian noise is added to the deformed atlas (Allassonnière et al., 2007). By applying the 

change of variables 𝑥 = 𝑇1(𝑦) and 𝑧 = 𝑇2(𝑦) in each integral, the above data term can be written as: 

�̃�(𝐼1, 𝐼2, 𝐴, 𝑇1, 𝑇2) = ∫ [((𝐼1 ∘ 𝑇1)(𝑦) − 𝐴(𝑦))
2
𝐽1(𝑦) + ((𝐼2 ∘ 𝑇2)(𝑦) − 𝐴(𝑦))

2
𝐽2(𝑦)] d𝑦

Ω

, (2) 

where 𝐽1(𝑦) ≔ det 𝜕𝑇1(𝑦) and 𝐽2(𝑦) ≔ det 𝜕𝑇2(𝑦) are the Jacobian determinants of the transformations. 

The �̂�(𝑦) minimizing the cost function is derived as (Ma et al., 2008):3 

 
�̂�(𝑦) =

𝐽1(𝑦)(𝐼1 ∘ 𝑇1)(𝑦) + 𝐽2(𝑦)(𝐼2 ∘ 𝑇2)(𝑦)

𝐽1(𝑦) + 𝐽2(𝑦)
. (3) 

In an explicit-atlas scheme, the transformations and the atlas can be iteratively computed from Eq. (1) and 

Eq. (3) (Hart et al., 2009).4 However, the atlas can indeed be eliminated from Eq. (2) by substituting 𝐴(𝑦) 

with �̂�(𝑦), leading to an implicit-atlas data term (Ashburner and Ridgway, 2013): 

 
�̃�(𝐼1, 𝐼2, �̂�, 𝑇1, 𝑇2) = ∫

((𝐼1 ∘ 𝑇1)(𝑦) − (𝐼2 ∘ 𝑇2)(𝑦))
2

𝐽1
−1(𝑦) + 𝐽2

−1(𝑦)
d𝑦

Ω

. (4) 

                                                           
3 �̂� is the minimizer of not only the data term, but the entire cost function, because the regularization term (Section 

2.2.2) does not depend on the atlas. 
4 Note that not every solution to which this atlas-based approach converges is necessarily an image-matching solution. 

For example, if the atlas (weighted average of the deformed images, Eq. (3)) happens to become a constant image 

during the optimization (𝐴(𝑦) = 𝑐), which is clearly not the desired image-matching solution, then the gradient of Eq. 

(1) with respect to the transformations will be zero and the optimization will converge to this spurious optimum.  
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As we will see in Section 2.3, keeping both 𝑇1 and 𝑇2 is redundant, which leads to further simplification of 

the data term by making it independent of the mid-space. 

2.2.2. Regularization term 

For the regularization term, we use the common Tikhonov integral that penalizes the deviation of the 

Jacobians of the transformations from the identity matrix. We want the following energy term to remain 

minimal: 

 
�̃�(𝑇1, 𝑇2) ≔ ∫ ‖𝜕(𝑇1

−1(𝑥)) − 𝕀‖
𝐹

2
d𝑥

Ω

+∫ ‖𝜕 (𝑇2
−1(𝑧)) − 𝕀‖

𝐹

2
d𝑧

Ω

, (5) 

where 𝕀 stands for the 𝑑×𝑑 identity matrix, and ‖∙‖𝐹 is the Frobenius norm. Note that we regularize 𝑇1
−1(𝑥) 

and 𝑇2
−1(𝑧) and compute the integrals in the physically-meaningful native image spaces, as opposed to 

regularizing 𝑇1(𝑦) and 𝑇2(𝑦) in the abstract mid-space. In Section 2.3.2, we will solve the minimization of 

�̃� with respect to one of the transformations, and rewrite it independent of the mid-space. 

2.3. Independence from the mid-space 

2.3.1. Mid-space-independent data term 

Here we demonstrate that the implicit-atlas based data term is inherently independent of the mid-space. In 

other words, we can find the optimal transformations 𝑇 between the two images, without solving for 𝑇1 and 

𝑇2 that define the mid-space. 

Equation (4) is a cost function of both 𝑇1 and 𝑇2. Even so, further simplification reveals that the two 

transformations are redundant. The change of variables 𝑦 = 𝑇1
−1(𝑥), with d𝑦 = d𝑥 (𝐽1 ∘ 𝑇1

−1)(𝑥)⁄ , reveals: 

 

�̃�(𝐼1, 𝐼2, �̂�, 𝑇1, 𝑇2) = ∫
(𝐼1(𝑥) − (𝐼2 ∘ 𝑇2 ∘ 𝑇1

−1)(𝑥))
2

1 +
(𝐽1 ∘ 𝑇1

−1)(𝑥)

(𝐽2 ∘ 𝑇1
−1)(𝑥)

d𝑥
Ω

. (6) 

Recall that the output transformation 𝑇 is computed as 𝑇(𝑥) = (𝑇2 ∘ 𝑇1
−1)(𝑥), the Jacobian determinant of 

which is 𝐽(𝑥) ≔ det 𝜕𝑇(𝑥) = (𝐽2 ∘ 𝑇1
−1)(𝑥) (𝐽1 ∘ 𝑇1

−1)(𝑥)⁄ . It now becomes clear that the above integral 

is, remarkably, only a function of 𝑇, and that the data term can be written independently of the individual 

𝑇1 and 𝑇2, as: 

 
𝐷(𝐼1, 𝐼2, 𝑇) ≔ ∫ (𝐼1(𝑥) − (𝐼2 ∘ 𝑇)(𝑥))

2 𝐽(𝑥)

1 + 𝐽(𝑥)
d𝑥

Ω

. (7) 

With the data term being independent of 𝑇1 and 𝑇2, the mid-space disappears, eliminating the problem of 

the mid-space drift as well. We no longer need to enforce any anti-drift constraints, hence naturally avoiding 

limiting the space of possible transformations 𝑇 by the particular choice of such constraints, and in fact 

widening the space of allowable transformations. This is while reducing the degrees of freedom of the 

optimization to half of those of the unconstrained problem of solving for both 𝑇1 and 𝑇2. 

Equation (7) might seem like a non-uniform integral in the native space of 𝐼1. However, this data term 

originates from Eq. (1), which is the sum of two integrals taken uniformly in the native spaces of images, 
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and non-uniformly only in the mid-space. Therefore, the pitfalls associated with non-uniform integration in 

native spaces (Aganj et al., 2015b) are not expected to arise.5 We have shown that Eq. (1) can be written 

independently of not only the atlas, as in Eq. (4), but also the mid-space itself, as in Eq (7). 

2.3.2. Mid-space-independent regularization term 

Contrary to the data term, the regularization in Eq. (5) depends on both 𝑇1 and 𝑇2, and therefore on the mid-

space. This is expected, since taking the mid-space far away from the image spaces would cause distortion 

in both transformations, thereby increasing �̃�(𝑇1, 𝑇2). 

Using 𝑇2 = 𝑇 ∘ 𝑇1, we first rewrite �̃�(𝑇1, 𝑇2) in terms of 𝑇1 and 𝑇: 

 
�̃�(𝑇1, 𝑇 ∘ 𝑇1) = ∫ ‖𝜕(𝑇1

−1(𝑥)) − 𝕀‖
𝐹

2
d𝑥

Ω

+∫ ‖𝜕((𝑇1
−1 ∘ 𝑇−1)(𝑧)) − 𝕀‖

𝐹

2
d𝑧

Ω

 

= ∫ ‖𝜕(𝑇1
−1(𝑥)) − 𝕀‖

𝐹

2
d𝑥

Ω

+∫‖(𝜕(𝑇1
−1) ∘ 𝑇−1)(𝑧)(𝜕𝑇−1 ∘ 𝑇−1)(𝑧) − 𝕀‖

𝐹

2
d𝑧

Ω

. 

(8) 

The change of variables 𝑧 = 𝑇(𝑥) leads to: 

 
�̃�(𝑇1, 𝑇 ∘ 𝑇1) = ∫ (‖𝜕(𝑇1

−1(𝑥)) − 𝕀‖
𝐹

2
+ ‖𝜕(𝑇1

−1(𝑥))𝜕𝑇−1(𝑥) − 𝕀‖
𝐹

2
𝐽(𝑥)) d𝑥

Ω

. (9) 

Using ‖𝑋‖𝐹
2 = tr(𝑋T𝑋) and then completing the square, one can verify that the above is equal to: 

�̃�(𝑇1, 𝑇 ∘ 𝑇1) = ∫ tr [(𝜕𝑇(𝑥) − 𝕀)T (𝕀 +
1

𝐽(𝑥)
𝜕𝑇(𝑥)𝜕𝑇(𝑥)T)

−1

(𝜕𝑇(𝑥) − 𝕀)] d𝑥
Ω

 

+∫ tr [(𝜕(𝑇1
−1(𝑥)) −𝑊(𝑥)) (𝕀 + 𝐽(𝑥)𝜕𝑇−1(𝑥)𝜕𝑇−1(𝑥)T) (𝜕(𝑇1

−1(𝑥)) −𝑊(𝑥))
T

] d𝑥
Ω

, 

(10) 

where 𝑊(𝑥) ≔ (𝐽(𝑥)𝕀 + 𝜕𝑇(𝑥)T)(𝐽(𝑥)𝕀 + 𝜕𝑇(𝑥)𝜕𝑇(𝑥)T)
−1
𝜕𝑇(𝑥). Diffeomorphism (𝐽(𝑥) > 0) implies 

that the middle factor in each of the two traces in Eq. (10) is positive definite, and consequently the 

integrands of the two integrals are nonnegative. Since both the data term, 𝐷(𝐼1, 𝐼2, 𝑇), and the first integral 

in Eq. (10) are independent of 𝑇1, the cost function (i.e. weighted sum of data and regularization terms) 

reaches its minimum with respect to 𝑇1 when the second integral in Eq. (10) equals zero, which happens 

for a �̂�1 satisfying 𝜕(�̂�1
−1) = 𝑊. We will not need the value of �̂�1 though, because 𝑇 alone will provide us 

with the complete solution to pairwise registration. Thus, we proceed by assigning 𝑇1 = �̂�1, thereby 

reducing the regularization term to its first integral: 

                                                           
5 Depending on the amount of volume change, the data term has the following local behavior: 

(𝐼1(𝑥) − (𝐼2 ∘ 𝑇)(𝑥))
2 𝐽(𝑥)

1 + 𝐽(𝑥)
d𝑥 ≈

{
 
 

 
 (𝐼1(𝑥) − (𝐼2 ∘ 𝑇)(𝑥))

2
d𝑥, 𝐽(𝑥) ≫ 1

(𝐼1(𝑥) − (𝐼2 ∘ 𝑇)(𝑥))
2 1 + 𝐽(𝑥)

4
d𝑥, 𝐽(𝑥) ≈ 1

((𝐼1 ∘ 𝑇
−1)(𝑧) − 𝐼2(𝑧))

2
d𝑧, 𝐽(𝑥) ≪ 1

, 

where 𝑧 = 𝑇(𝑥). This implies that, in regions with extreme volume change, the data term locally switches the reference 

space to the native space of the expanding image. 
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 𝑅(𝑇) ≔ min
𝑇1
�̃�(𝑇1, 𝑇 ∘ 𝑇1)

= ∫ tr [(𝜕𝑇(𝑥) − 𝕀)T (𝕀 +
1

𝐽(𝑥)
𝜕𝑇(𝑥)𝜕𝑇(𝑥)T)

−1

(𝜕𝑇(𝑥) − 𝕀)] d𝑥
Ω

. 
(11) 

The middle factor in the trace is what distinguishes the proposed 𝑅(𝑇) from the standard asymmetric 

Tikhonov regularization, ∫ ‖𝜕𝑇(𝑥) − 𝕀‖𝐹
2d𝑥

Ω
. 

2.3.3. Mid-space-independent cost function 

Image registration can now be independent of the mid-space by minimizing a weighted sum of the proposed 

data and regularization terms, as: 

 �̂� = argmin
𝑇

𝐷(𝐼1, 𝐼2, 𝑇) + 𝜆𝑅(𝑇), (12) 

where 𝜆 is a manually determined positive constant. In the continuous case, this cost function is symmetric, 

as one can verify that 𝐷(𝐼1, 𝐼2, 𝑇) = 𝐷(𝐼2, 𝐼1, 𝑇
−1) and 𝑅(𝑇) = 𝑅(𝑇−1). In Section 2.4, we will discuss how 

to alleviate any possible bias due to discretization artifacts. 

2.4. Implementation 

We minimize the cost function in Eq. (12) via gradient descent with line search. Similar to the 

diffeomorphic demons framework (Vercauteren et al., 2009), we minimize in alternative steps the data term 

and the regularization term, using the compositive and additive schemes, respectively.6 

For the data term, we update 𝑇 by composing it with a transformation 𝑆, which is chosen to be the 

exponential of the update field to preserve the diffeomorphism. To that end, at each iteration we fix 𝑇 and 

compute the variation of 𝐷(𝐼1, 𝐼2, 𝑇 ∘ 𝑆) with respect to 𝑆, with 𝑆 currently assumed to be the identity 

transformation (Id(𝑥) = 𝑥). Following the chain rule for the derivative, we have: 

 δ𝐷(𝐼1, 𝐼2, 𝑇 ∘ 𝑆)

δ𝑆
|
𝑆=Id

=
𝜕

𝜕𝑆
(𝑇 ∘ 𝑆)

δ𝐷(𝐼1, 𝐼2, 𝑇 ∘ 𝑆)

δ(𝑇 ∘ 𝑆)
|
𝑆=Id

= 𝜕𝑇T
δ𝐷(𝐼1, 𝐼2, 𝑇)

δ𝑇
. (13) 

The notation (𝑥) has been dropped for brevity. We use the Lemma in Appendix B to compute the variation 

of the data term as follows: 

δ𝐷(𝐼1, 𝐼2, 𝑇 ∘ 𝑆)

δ𝑆
|
𝑆=Id

= −
2(𝐼1 − 𝐼2 ∘ 𝑇)𝐽

(1 + 𝐽)2
(∇𝐼1 + 𝐽∇(𝐼2 ∘ 𝑇)) + (𝐼1 − 𝐼2 ∘ 𝑇)

2∇ [(
𝐽

1 + 𝐽
)
2

]. (14) 

The last term of Eq. (14) involves the Hessian of the deformation field, which can introduce large 

discretization error that possibly outweighs the accuracy that this term brings about. In our experiments, 

ignoring this second-derivative term improved the optimization of the cost function. 

As for the regularization term, we derive its variation in Appendix C as: 

                                                           
6 We also tried a simultaneous compositive scheme for both terms, which however did not improve the optimization. 
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 δ𝑅(𝑇)

δ𝑇
= −div [2𝐽𝑃(𝕀 − 𝑃T𝜕𝑇) + ‖𝑃T𝜕𝑇‖

𝐹

2
𝐶], (15) 

where 𝑃 ≔ (𝐽𝕀 + 𝜕𝑇𝜕𝑇T)
−1
(𝜕𝑇 − 𝕀), the divergence is defined as div𝑋 ≔ (∇T𝑋T)

T
, and 𝐶 ≔ 𝐽𝜕𝑇−1

T
 is 

the cofactor matrix of 𝜕𝑇. Keeping the transformation diffeomorphic is especially important for the 

proposed method, given that the Jacobian appears in both the data and regularization terms. Therefore, we 

also include the following symmetric logarithmic barrier term to keep the Jacobian determinant away from 

zero: 

 
𝐿(𝑇) ≔ ∫ (log 𝐽(𝑥))2(1 + 𝐽(𝑥))d𝑥

Ω

, (16) 

where 𝛾𝐿(𝑇) is added to 𝑅(𝑇) (and to the regularization terms of the other methods in Section 3). Note that 

𝐿(𝑇) = 𝐿(𝑇−1). In our experiments, the best optimization performance was obtained with 𝛾 = 10−6, which 

is the value used in the reported results. We calculate the variation of 𝐿(𝑇) using the Lemma in Appendix 

B, as: 

 δ𝐿(𝑇)

δ𝑇
= −𝐶∇ [2 (1 +

1

𝐽
) log 𝐽 + (log 𝐽)2]. (17) 

We start the line search by initializing 𝑆(𝑥) ← 𝑥 − Δ
δ𝐷

δ𝑆
|
𝑆=Id

 for a small step size Δ. Then, at step 𝑘 of the 

line search (starting from 𝑘 = 1), we compute the intermediate transformation 𝑇𝑘 ← 𝑇 ∘ 𝑆 and regularize 

it with 𝑇𝑘 ← 𝑇𝑘 − 2𝑘−1Δ
δ𝑅

δ𝑇
|
𝑇=𝑇𝑘

.7 Next we compute the value of the cost function for the transformation 

𝑇𝑘, and compare it with those of the previous steps of the line search. If the current value of cost function 

has not been the minimum for 𝑀 consecutive line-search steps, then we stop the line search and update 𝑇 

to be the intermediate transformation 𝑇𝑘
∗
 that minimized the cost function. Otherwise, inspired by the 

diffeomorphic demons (Vercauteren et al., 2009), we update 𝑆 ← 𝑆 ∘ 𝑆 and move on to step 𝑘 + 1 of the 

line search. We heuristically chose 𝑀 = 4 and 𝑀 = 2 for our 2D and 3D experiments, respectively. Note 

that the intermediate transformations 𝑇𝑘 do not need all to be stored in the memory during the line search; 

only 𝑇𝑘
∗
 that minimizes the cost function needs to be kept in the memory and updated at each line-search 

step. 

As already mentioned, the proposed continuous cost function in Eq. (12) is symmetric, meaning that it is 

unaffected by concurrently changing the order of the input images and inverting the transformation. We 

take a unidirectional cost-function optimization approach, such as in (Leow et al., 2007), which resamples 

𝐼2, but not 𝐼1. Therefore, discretization artifacts may produce a symmetry-breaking bias. Yushkevich et al. 

(2010) have shown, however, that in hippocampal atrophy estimation most of such bias could be attributed 

to linear registration, rather than the subsequent deformable registration, and that symmetrizing the linear 

registration (Reuter et al., 2010) can remove the bias. Nonetheless, further steps can be taken to address the 

discretization bias in deformable registration, for instance, by avoiding the resampling step after 

interpolation, thereby eliminating the resampling artifacts and their resultant registration asymmetry. To 

                                                           
7 We noticed that the regularization improves if it is done 𝜇 times consecutively (we used 𝜇 = 10), each time as 𝑇𝑘 ←

𝑇𝑘 −
2𝑘−1Δ

𝜇

δ𝑅

δ𝑇
|
𝑇=𝑇𝑘

. 
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that end, the continuously interpolated integrals of the cost function can be either calculated analytically or 

estimated by quasi-random sampling (Aganj et al., 2013). An alternative strategy to reduce asymmetry due 

to discretization would be to optimize the cost function in a bidirectional fashion, i.e. with respect to both 

𝑇 and 𝑇−1 (Sabuncu et al., 2009). Although this is (in the continuous domain) still equivalent to optimizing 

the original unidirectional cost function, it will balance the resampling error on the two image spaces at the 

discretization step. 

3. Results and discussion 

We tested the proposed deformable registration method on brain T1-weighted magnetic resonance images, 

which had been pre-processed (intensity-normalized, skull-stripped, linearly co-registered, and resampled 

to 1-mm³ isotropic voxel) in FreeSurfer (Fischl, 2012). We used both 2D and 3D images in our experiments 

(in sections 3.1 and 3.2, respectively) to demonstrate the applicability of our method independently of the 

dimensionality of the images. To evaluate our mid-space-independent (MSI) registration data term, we 

compared it to two other data terms; first, the standard asymmetric SSD: 

 
𝐷asymmetric(𝐼1, 𝐼2, 𝑇) ≔ ∫ (𝐼1(𝑥) − (𝐼2 ∘ 𝑇)(𝑥))

2
d𝑥

Ω

, (18) 

with the following compositive gradient: 

 δ

δ𝑆
𝐷asymmetric(𝐼1, 𝐼2, 𝑇 ∘ 𝑆)|

𝑆=Id
= −2(𝐼1 − 𝐼2 ∘ 𝑇)∇(𝐼2 ∘ 𝑇); (19) 

second, with the popular symmetrization data term that minimizes the average of the asymmetric forward 

and backward data terms (Cachier and Rey, 2000; Christensen and Johnson, 2001; Tagare et al., 2009; 

Trouvé and Younes, 2000): 

 
𝐷symmetrization(𝐼1, 𝐼2, 𝑇) ≔ ∫ (𝐼1(𝑥) − (𝐼2 ∘ 𝑇)(𝑥))

2 1 + 𝐽(𝑥)

2
d𝑥

Ω

, (20) 

with the following compositive gradient, computed using the Lemma in Appendix B: 

 δ

δ𝑆
𝐷symmetrization(𝐼1, 𝐼2, 𝑇 ∘ 𝑆)|

𝑆=Id
= −(𝐼1 − 𝐼2 ∘ 𝑇)(𝐽∇𝐼1 + ∇(𝐼2 ∘ 𝑇)). 

(21) 

To assess the performance of the data terms independently of the regularization, we first compared the three 

(asymmetric, symmetrization, and MSI) data terms while employing the standard asymmetric 

regularization term ∫ ‖𝜕𝑇(𝑥) − 𝕀‖𝐹
2d𝑥

Ω
 (with the variation −2∇2𝑇) for all three of them. Subsequently, to 

evaluate the proposed regularization, we used the MSI data and regularization terms together in 

registration.8 

                                                           
8 For the symmetrization method, one could also use a symmetrized regularization term such as: 

𝑅symmetrization(𝑇) ≔
1

2
(∫‖𝜕𝑇(𝑥) − 𝕀‖𝐹

2d𝑥
Ω

+∫‖𝜕(𝑇−1(𝑧)) − 𝕀‖
𝐹

2
d𝑧

Ω

), 

which, by following similar steps as in Appendix C, can be seen to have the following variation: 
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We implemented the deformable image registration (for all the mentioned cost functions) in Matlab using 

the displacement-field representation of the transformation.9 All input images had intensity values between 

0 and 1, and we used the double-precision floating-point format to represent the images and transformations. 

Registration was done subsequently in three levels of resolution: quarter-, half-, and full-resolution. In the 

quarter- and half-resolution levels, we used cubic interpolation to down-sample the input images, and then 

to up-sample the output transformation to be used as the initial value for the next level of resolution. 

The optimal values for the registration parameters generally vary among different cost functions. Thus, for 

a fair comparison, we considered the results of each cost function with the parameter values that lead to its 

optimal performance. For each pair of input images and for each method, we repeatedly ran the registration 

with a wide range of values for the regularization parameter 𝜆 and the step size Δ, and then chose the 

experiment with the best result (i.e. the one producing the optimal value for the criterion that is explained 

in each of the following subsections). In the following, we report the cross-subject mean of the optimal 

parameter values 𝜆∗ and Δ∗ in each set of experiments (choosing extreme values for 𝜆 or Δ produced 

suboptimal results or caused the optimization to not converge). 

3.1. Retrieval of synthetic 2D deformations 

In the first set of experiments, we compared the methods on the mid-sagittal planes of 20 brain images 

taken from the publicly available Open Access Series of Imaging Studies (OASIS) database (Marcus et al., 

2007), using synthetic deformations that provide us with the entire ground-truth transformation. From each 

volume, we extracted the sagittal slice, 𝐼, located four voxels to the right of the mid-sagittal plane, and 

resampled it to the size 128×128 (Figure 1a). For each subject, we synthesized two random deformation 

fields 𝑇1
synth

 and 𝑇2
synth

, spatially low-pass filtered them, and applied them to 𝐼. Next, we added Gaussian 

noise (𝜂1 and 𝜂2) with standard deviation of 0.1 to the deformed images to obtain two synthetic images, 

𝐼1 = 𝐼 ∘ 𝑇1
synth

+ 𝜂1 and 𝐼2 = 𝐼 ∘ 𝑇2
synth

+ 𝜂2 (Figure 1b,c), which we then registered with each other using 

different methods (Figure 1d).10 The registration experiments consisted of 1000 gradient descent iterations 

                                                           
δ

δ𝑇
𝑅symmetrization(𝑇) = −div [𝜕𝑇 + 𝜕𝑇−1

T
(𝕀 − 𝜕𝑇−1)𝐶 +½‖𝜕𝑇−1 − 𝕀‖𝐹

2𝐶]. 

We tried this regularization, which, however, proved to be very unstable in practice. This is possibly because of the 

Jacobian matrix inversion, 𝜕𝑇−1, which is a numerically unstable operation due to discretization artifacts. 
9 Our Matlab implementation is publicly available at:  www.nitrc.org/projects/msi-register 
10 The preprocessing scripts to generate the input data are available upon request. 

 

Figure 1.  The original image (a) was deformed by two synthetic random transformations, and Gaussian 

noise was added (b,c). The deformed images were then registered with each other (d). 

 

http://www.nitrc.org/projects/msi-register
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at each of the three resolution levels. For each of the 20 subjects and each of the 4 methods, we repeated 

the registration with the regularization parameter 𝜆 taking a range of 50 different values (from 0.00001 to 

1), and the step size Δ taking a range of 30 different values (from 0.01 to 256). 

Ideally, we would expect to retrieve a transformation 𝑇 satisfying 𝑇1
synth

≈ 𝑇2
synth

∘ 𝑇. Accordingly, we 

computed the error 𝜖 ≔ ∫ ‖𝑇1
synth(𝑥) − (𝑇2

synth
∘ 𝑇) (𝑥)‖

2

2
d𝑥

Ω
, and for each subject and method, chose 

the best result (the one with the smallest 𝜖) among the experiments with different values of 𝜆 and Δ. The 

cross-subject averages of the optimal 𝜖∗, 𝜆∗, and Δ∗ are presented in Table 1, and a summary of the results 

of pairwise comparisons between different methods is presented in Table 2. As can be seen, all the methods 

significantly reduced the error compared to the pre-registration (i.e. 𝑇(𝑥) = 𝑥) error. The proposed MSI 

data term with standard asymmetric regularization resulted in the smallest cross-subject average error. 

Specifically, the MSI data term significantly outperformed the symmetrization data term, but performed 

only slightly better than the asymmetric data term.11 Regarding the proposed regularization, methods using 

standard asymmetric regularization resulted in significantly smaller errors than the one using MSI 

regularization did (see Section 3.2 for a discussion). 

The runtimes averaged across the optimal experiments are shown in Table 1 (see Section 3.2 for hardware 

specifications). GPU parallelization did not offer any advantage in our 2D experiments. 

  

                                                           
11 Please note that the definition of 𝜖 is inherently asymmetric, as the difference between 𝑇1

synth
 and 𝑇2

synth
∘ 𝑇 is 

computed in the native space of image 1. Since the asymmetric data term, too, minimizes the error in the native space 

of image 1, 𝜖 may be biased towards favoring asymmetric approaches. To compute the error on the native space of 

image 2, as in ∫ ‖(𝑇1
synth

∘ 𝑇−1)(𝑧) − 𝑇2
synth(𝑧)‖

2

2
d𝑧

Ω
, we would have had to invert 𝑇, which is not straightforward 

with the displacement-field representation of the transformation, and introduces large numerical errors. Nevertheless, 

in Section 3.2, we will compare the methods differently and on both native spaces. 
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Table 1:  Minimum error 𝜖∗, optimal regularization parameter 𝜆∗, optimal step size Δ∗, and the runtime of 

optimal experiment have been averaged for each method across subjects and presented along with their 

standard errors of the mean. 

Mean across 

optimal 

experiments: 

Before 

registration 

Data term: 

Asymmetric 

Regularization: 

Asymmetric 

Data term: 

Symmetrization 

Regularization: 

Asymmetric 

Data term: 

MSI 

Regularization: 

Asymmetric 

Data term: 

MSI 

Regularization: 

MSI 

𝝐∗ 5.602 ± 0.082 4.425 ± 0.075 4.470 ± 0.075 4.421 ± 0.070 4.701 ± 0.078 

𝝀∗ - 0.0027 ± 0.0003 0.006 ± 0.001 0.004 ± 0.001 0.021 ± 0.002 

𝚫∗ - 29 ± 5 11 ± 3 49 ± 7 0.3 ± 0.1 

Runtime (CPU) - 8.8 ± 0.6 m 8.1 ± 0.2 m 7.9 ± 0.1 m 22.4 ± 0.5 m 

 

Table 2.  Pairwise comparison of the results in Section 3.1. In row 𝑖 and column 𝑗, the percentage of the 

subjects for which method 𝑖 outperformed method 𝑗 (resulted in lower 𝜖∗) is shown, along with the p-values 

for two-tailed paired Student’s t- (pt) and sign rank (ps) tests. 

Mean across 

optimal 

experiments: 

Before 

registration 

Data term: 

Asymmetric 

Regularization: 

Asymmetric 

Data term: 

Symmetrization 

Regularization: 

Asymmetric 

Data term: 

MSI 

Regularization: 

Asymmetric 

Data term: 

MSI 

Regularization: 

MSI 

Before 

registration 
- 

0% 

pt = 7 × 10-17 

ps  = 9 × 10-5 

0% 

pt = 6 × 10-16 

ps  = 9 × 10-5 

0% 

pt = 1 × 10-15 

ps  = 9 × 10-5 

0% 

pt = 7 × 10-15 

ps  = 9 × 10-5 

Data term: 

Asymmetric 

Regularization: 

Asymmetric 

100% 

pt = 7 × 10-17 

ps  = 9 × 10-5 

- 
70% 

pt = 0.02 

ps  = 0.03 

45% 

pt = 0.8 

ps  = 0.8 

100% 

pt = 6 × 10-8 

ps  = 9 × 10-5 

Data term: 

Symmetrization 

Regularization: 

Asymmetric 

100% 

pt = 6 × 10-16 

ps  = 9 × 10-5 

30% 

pt = 0.02 

ps  = 0.03 

- 

25% 

pt = 0.02 

ps  = 0.01 

100% 

pt = 7 × 10-7 

ps  = 9 × 10-5 

Data term: 

MSI 

Regularization: 

Asymmetric 

100% 

pt = 1 × 10-15 

ps  = 9 × 10-5 

55% 

pt = 0.8 

ps  = 0.8 

75% 

pt = 0.02 

ps  = 0.01 

- 
100% 

pt = 5 × 10-8 

ps  = 9 × 10-5 

Data term: 

MSI 

Regularization: 

MSI 

100% 

pt = 7 × 10-15 

ps  = 9 × 10-5 

0% 

pt = 6 × 10-8 

ps  = 9 × 10-5 

0% 

pt = 7 × 10-7 

ps  = 9 × 10-5 

0% 

pt = 5 × 10-8 

ps  = 9 × 10-5 

- 
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3.2. Registration of labeled 3D images 

We performed a second set of experiments using a dataset of 3D brain T1-weighted magnetic resonance 

images (Fischl et al., 2002). The dataset included 39 (14 male and 25 female) subjects, of which 28 were 

healthy and 11 had been diagnosed with dementia. The mean and standard deviation of the age was 55 and 

23 years, respectively. This dataset additionally included manual-label volumes for 37 neuroanatomical 

structures (Figure 2), which had been used in the creation of the volumetric atlas of FreeSurfer (Fischl, 

2012). To reduce the blank areas in the background, we cropped the images to the size 158×182×190. Out 

of the 39×38=1482 possible combinations for ordered pairs, we randomly selected 40 pairs of images and 

registered each pair using the aforementioned methods. The registration experiments consisted of 100 

gradient descent iterations at each of the three resolution levels. For each of the 40 pairs of subjects and 

each of the 4 methods, we repeated the registration with the regularization parameter 𝜆 taking a range of 30 

different values (from 0.00001 to 1), and the step size Δ taking a range of 15 different values (from 0.01 to 

500). 

For validation and comparison, we considered 12 key subcortical regions: left/right amygdala, caudate, 

hippocampus, pallidum, putamen, and thalamus.12 As a similarity score, we computed in the union of these 

regions the portion of the voxels with matching labels between the two images. The scores are defined 

respectively in the native spaces of image 1 and image 2 as: 

 
𝜓1 ≔

1

|Ω1|
∑ 𝛿𝑙1(𝑥),(𝑙2∘𝑇)(𝑥)
𝑥∈Ω1

, 

𝜓2 ≔
1

|Ω2|
∑ 𝛿(𝑙1∘𝑇−1)(𝑧),𝑙2(𝑧)
𝑧∈Ω2

, 

(22) 

where Ω𝑖 is the set of all voxels inside the union of the 12 subcortical regions in image 𝑖, with |Ω𝑖| being 

its size; 𝛿𝑖,𝑗 = {
0 , 𝑖 ≠ 𝑗
1 , 𝑖 = 𝑗

 is the Kronecker delta; and 𝑙1 and 𝑙2 are the label images that take 13 different 

integer values: 1 to 12 indicating each of the 12 subcortical regions, and 0 for a voxel outside of those 12 

regions. Consequently, 𝛿𝑙1(𝑥),𝑙2(𝑧) is 1 if 𝑙1 has the same label at voxel 𝑥 as 𝑙2 does at voxel 𝑧, and is 0 

otherwise. For 𝜓1, we deformed the label volume of image 2 with the computed transformation 𝑇, and for 

                                                           
12 Given that cortical regions are best aligned using surface-based registration (Fischl, 2012), we consider only 

subcortical regions here for the evaluation of our compared volumetric registration methods. 

 

Figure 2.  Coronal slices from 3D labels of four of the subjects used in Section 3.2. 
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𝜓2, we pushed the label values from image 1 forward to the space of image 2 according to 𝑇. We used the 

nearest-neighbor label interpolation in both cases. For each of the 4 methods and each of the 40 pairs of 

subjects, we chose the maximal 𝜓1
∗ and the maximal 𝜓2

∗, achieved among the experiments with different 

values of 𝜆 and Δ. The cross-subject average of 𝜓1
∗ in the native space of image 1, along with the averages 

of optimal 𝜆∗ and Δ∗ are presented in Table 3, and a summary of the pairwise comparisons between different 

methods is presented in Table 4. Results of the label-matching analysis in the native space of image 2 (i.e., 

using 𝜓2
∗) are presented in Table 5 and Table 6. 

All the methods significantly improved label matching compared to the pre-registration case. When we 

compared the labels in the native space of image 1, asymmetric registration produced the highest label-

matching score, which was significantly higher than those by both the symmetrization method and 

(according to sign rank test but not t-test) the proposed MSI method. This is expected, given that the 

asymmetric method minimizes a cost function that is defined in the space of image 1. Conversely, when we 

compared the labels in the native space of image 2, the MSI data term with asymmetric regularization 

resulted in the highest label-matching score among the methods, which was significantly higher than that 

of the asymmetric data term. In both native spaces, the proposed MSI data term with asymmetric 

regularization resulted in higher label-matching score than the symmetrization data term did, which was 

significant in the native space of image 1. 

Using the MSI regularization significantly reduced the label-matching score compared to using the standard 

asymmetric regularization. The sub-optimal performance of this regularization term may be due to 

numerical instabilities that are caused by the matrix inversion (𝐽𝕀 + 𝜕𝑇𝜕𝑇T)
−1

, which is necessary to 

compute the variation of the regularization term in Eq. (15). Despite the fact that the exponential update 

(for the data term) and the logarithmic barrier keep the transformation mostly diffeomorphic, there still 

remain some voxels with non-positive Jacobian determinant in the transformation that can make the 

mentioned matrix inversion unstable. This is not an issue for the asymmetric regularization as the variation 

of the asymmetric regularization term, −2∇2𝑇, is linear with respect to the transformation and not 

susceptible to non-diffeomorphic regions. 

Next, we assessed the sensitivity of the label-matching scores to the ordering of the input images. Using 

the same optimal parameters, we repeated the experiments but this time with swapped input images (𝐼1 ↔

𝐼2), and computed 𝜓1
bw and 𝜓2

bw similarly to above for the new backward experiments. For symmetric 

registration, we expect the score of the forward registration in the reference space (𝜓1) to be similar to that 

of the backward registration in the moving image space (𝜓2
bw), and also the score of the forward registration 

in the moving image space (𝜓2) to be similar to that of the backward registration in the reference space 

(𝜓1
bw). Accordingly, we computed the following measure of label-matching asymmetry, whose mean is 

reported for different methods in Table 3 and Table 5: 

 𝜎 ≔ (|𝜓1 − 𝜓2
bw| + |𝜓2 − 𝜓1

bw|) 2⁄ . (23) 

As expected, the asymmetric data term resulted in a larger 𝜎 than the two symmetric data terms did (with 

asymmetric regularization). Discretization artifacts – during both registration and score computation – are 

an important factor contributing to the positive values of 𝜎 for the symmetric cost functions (see Section 

2.4). The values of 𝜎 are considerably smaller for optimal transformations that are chosen based on label-

matching in the space of image 2 (Table 5), where labels in the moving image space are supposedly better 
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defined due to smoother inverse transformations. Asymmetric regularization is another factor contributing 

to an elevated 𝜎. Using the MSI (instead of asymmetric) regularization helped to reduce 𝜎 for the MSI data 

term when transformations had been optimized based on 𝜓1 (but not when based on 𝜓2). 

To assess the smoothness of the optimal transformations, we also computed the percentage of voxels where 

the Jacobian determinant of the optimal transformation was non-positive (𝐽(𝑥) ≤ 0), shown in Table 3 and 

Table 5. This value is lowest for the symmetrization data term. Furthermore, for all the methods, this value 

is significantly lower when optimal transformations are chosen based on label matching in the native space 

of image 2. This may be because a lower number of voxels with non-positive Jacobian determinant implies 

a smoother inverse transform, hence a better label definition in the space of image 2. 

Although we distributed the bulk of our experiments on various hardware platforms, we used consistent 

hardware for the abovementioned inverse optimal experiments while measuring the runtimes, which are 

shown in Table 3 and Table 5. When the asymmetric regularization was used, the runtimes were roughly 

in the same range for the three data terms, while the experiments with optimal label matching in the space 

of image 2 were faster than those with optimal matching in the space of image 1. We observed that the 

differences between the runtimes were mainly because of the variation in the total number of line-search 

iterations performed in the experiments, to which the runtime is proportional. When the MSI regularization 

was used, registration took about 4 times longer, mostly due to the matrix-inversion operations in Eq. (11) 

and Eq. (15). For the CPU experiments, we used processors based on the Intel Xeon E5-2667 v3 Haswell 

3.2 GHz (3.6 GHz with turbo) with DDR 4 memory. We ran two experiments simultaneously on each 8-

core 56GB-RAM virtual machine. (Note that Matlab may internally multi-thread some of its matrix 

operations.) Additionally, we repeated each optimal experiment using an NVIDIA Tesla K80 graphics 

processing unit (GPU) and 1 CPU core, which made the 3D registration on average 16 times faster. 
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Table 3:  Maximum label-matching score 𝜓1
∗ in the native space of image 1, optimal regularization 

parameter 𝜆∗, optimal step size Δ∗, label-matching asymmetry 𝜎, the portion of voxels with 𝐽 ≤ 0, and the 

runtime of the optimal experiment have been averaged for each method across subjects and presented along 

with their standard errors of the mean. 

Mean across 

optimal 

experiments: 

Before 

registration 

Data term: 

Asymmetric 

Regularization: 

Asymmetric 

Data term: 

Symmetrization 

Regularization: 

Asymmetric 

Data term: 

MSI 

Regularization: 

Asymmetric 

Data term: 

MSI 

Regularization: 

MSI 

𝝍𝟏
∗  0.638 ± 0.012 0.849 ± 0.004 0.835 ± 0.004 0.847 ± 0.003 0.784 ± 0.006 

𝝀∗ - 0.003 ± 0.001 0.006 ± 0.001 0.003 ± 0.001 0.0006 ± 0.0002 

𝚫∗ - 143 ± 13 59 ± 9 151 ± 15 3.1 ± 0.5 

𝝈 - 0.099 ± 0.008 0.023 ± 0.003 0.083 ± 0.007 0.050 ± 0.003 

𝑱 ≤ 𝟎 - (2.2 ± 0.2) % (0.08 ± 0.02) % (1.7 ± 0.3) % (4.2 ± 0.3) % 

Runtime (CPU) - 8.4 ± 0.3 hr 7.9 ± 0.7 hr 7.7 ± 0.3 hr 26.9 ± 0.4 hr 

Runtime (GPU) - 30 ± 1 m 29 ± 3 m 30 ± 2 m 115 ± 2 m 

 

Table 4.  Pairwise comparison of the label-matching results in the native space of image 1. In row 𝑖 and 

column 𝑗, the percentage of the subjects for which method 𝑖 outperformed method 𝑗 (resulted in higher 𝜓1
∗) 

is shown, along with the p-values for two-tailed paired Student’s t- (pt) and sign rank (ps) tests. 

Mean across 

optimal 

experiments: 

Before 

registration 

Data term: 

Asymmetric 

Regularization: 

Asymmetric 

Data term: 

Symmetrization 

Regularization: 

Asymmetric 

Data term: 

MSI 

Regularization: 

Asymmetric 

Data term: 

MSI 

Regularization: 

MSI 

Before 

registration 
- 

0% 

pt = 3 × 10-20 

ps  = 4 × 10-8 

0% 

pt = 7 × 10-20 

ps  = 4 × 10-8 

0% 

pt = 2 × 10-20 

ps  = 4 × 10-8 

0% 

pt = 7 × 10-17 

ps  = 4 × 10-8 

Data term: 

Asymmetric 

Regularization: 

Asymmetric 

100% 

pt = 3 × 10-20 

ps  = 4 × 10-8 

- 
92.5% 

pt = 2 × 10-8 

ps  = 1 × 10-7 

72.5% 

pt = 0.13 

ps  = 0.01 

100% 

pt = 6 × 10-15 

ps  = 4 × 10-8 

Data term: 

Symmetrization 

Regularization: 

Asymmetric 

100% 

pt = 7 × 10-20 

ps  = 4 × 10-8 

7.5% 

pt = 2 × 10-8 

ps  = 1 × 10-7 

- 

10% 

pt = 3 × 10-7 

ps  = 1 × 10-7 

100% 

pt = 3 × 10-12 

ps  = 4 × 10-8 

Data term: 

MSI 

Regularization: 

Asymmetric 

100% 

pt = 2 × 10-20 

ps  = 4 × 10-8 

27.5% 

pt = 0.13 

ps  = 0.01 

90% 

pt = 3 × 10-7 

ps  = 1 × 10-7 

- 
100% 

pt = 2 × 10-14 

ps  = 4 × 10-8 

Data term: 

MSI 

Regularization: 

MSI 

100% 

pt = 7 × 10-17 

ps  = 4 × 10-8 

0% 

pt = 6 × 10-15 

ps  = 4 × 10-8 

0% 

pt = 3 × 10-12 

ps  = 4 × 10-8 

0% 

pt = 2 × 10-14 

ps  = 4 × 10-8 

- 
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Table 5:  Maximum label-matching score 𝜓2
∗ in the native space of image 2, optimal regularization 

parameter 𝜆∗, optimal step size Δ∗, label-matching asymmetry 𝜎, the portion of voxels with 𝐽 ≤ 0, and the 

runtime of the optimal experiment have been averaged for each method across subjects and presented along 

with their standard errors of the mean. 

Mean across 

optimal 

experiments: 

Before 

registration 

Data term: 

Asymmetric 

Regularization: 

Asymmetric 

Data term: 

Symmetrization 

Regularization: 

Asymmetric 

Data term: 

MSI 

Regularization: 

Asymmetric 

Data term: 

MSI 

Regularization: 

MSI 

𝝍𝟐
∗  0.6218 ± 0.0161 0.8143 ± 0.0065 0.8158 ± 0.0059 0.8159 ± 0.0063 0.7365 ± 0.0089 

𝝀∗ - 0.004 ± 0.001 0.005 ± 0.001 0.005 ± 0.001 0.003 ± 0.001 

𝚫∗ - 35 ± 2 25 ± 2 34 ± 2 0.3 ± 0.1 

𝝈 - 0.010 ± 0.003 0.005 ± 0.001 0.006 ± 0.001 0.033 ± 0.003 

𝑱 ≤ 𝟎 - (0.033 ± 0.008) % (0.011 ± 0.003) % (0.018 ± 0.005) % (1.8 ± 0.2) % 

Runtime (CPU) - 6.19 ± 0.05 hr 6.32 ± 0.06 hr 6.17 ± 0.03 hr 26.6 ± 0.6 hr 

Runtime (GPU) - 22.0 ± 0.1 m 22.3 ± 0.2 m 21.82 ± 0.04 m 119 ± 2 m 

 

Table 6.  Pairwise comparison of the label-matching results in the native space of image 2. In row 𝑖 and 

column 𝑗, the percentage of the subjects for which method 𝑖 outperformed method 𝑗 (resulted in higher 𝜓2
∗) 

is shown, along with the p-values for two-tailed paired Student’s t- (pt) and sign rank (ps) tests. 

Mean across 

optimal 

experiments: 

Before 

registration 

Data term: 

Asymmetric 

Regularization: 

Asymmetric 

Data term: 

Symmetrization 

Regularization: 

Asymmetric 

Data term: 

MSI 

Regularization: 

Asymmetric 

Data term: 

MSI 

Regularization: 

MSI 

Before 

registration 
- 

0% 

pt = 3 × 10-18 

ps  = 4 × 10-8 

0% 

pt = 5 × 10-18 

ps  = 4 × 10-8 

0% 

pt = 2 × 10-18 

ps  = 4 × 10-8 

0% 

pt = 3 × 10-15 

ps  = 4 × 10-8 

Data term: 

Asymmetric 

Regularization: 

Asymmetric 

100% 

pt = 3 × 10-18 

ps  = 4 × 10-8 

- 

45% 

pt = 0.2 

ps  = 0.4 

30% 

pt = 0.002 

ps  = 0.004 

100% 

pt = 5 × 10-18 

ps  = 4 × 10-8 

Data term: 

Symmetrization 

Regularization: 

Asymmetric 

100% 

pt = 5 × 10-18 

ps  = 4 × 10-8 

55% 

pt = 0.2 

ps  = 0.4 

- 

30% 

pt = 0.9 

ps  = 0.06 

100% 

pt = 5 × 10-18 

ps  = 4 × 10-8 

Data term: 

MSI 

Regularization: 

Asymmetric 

100% 

pt = 2 × 10-18 

ps  = 4 × 10-8 

67.5% 

pt = 0.002 

ps  = 0.004 

70% 

pt = 0.9 

ps  = 0.06 

- 
100% 

pt = 1 × 10-18 

ps  = 4 × 10-8 

Data term: 

MSI 

Regularization: 

MSI 

100% 

pt = 3 × 10-15 

ps  = 4 × 10-8 

0% 

pt = 5 × 10-18 

ps  = 4 × 10-8 

0% 

pt = 5 × 10-18 

ps  = 4 × 10-8 

0% 

pt = 1 × 10-18 

ps  = 4 × 10-8 

- 



20 
 

Lastly, to see the range of label-matching scores that existing state-of-the-art registration toolboxes would 

produce on our data, we repeated the experiments using Advanced Normalization Tools (ANTs) Symmetric 

Normalization (SyN) (Avants et al., 2008) and FSL FMRIB’s Nonlinear Image Registration Tool (FNIRT) 

(Andersson et al., 2007). We used the same three levels of resolution and a maximum of 100 iterations per 

level, although registration often converged in less than 100 iterations. The cross-subject mean of (𝜓1, 𝜓2) 

was (0.74 ± 0.02, 0.72 ± 0.02) for ANTs SyN and (0.80 ± 0.01, 0.70 ± 0.02) for FNIRT. Since these label-

matching scores were computed using the toolboxes’ default or suggested parameter values13, they should 

not be directly compared to the values in Table 3 and Table 5, which have been optimized by an exhaustive 

search in the parameter space. 

4. Conclusions 

We have demonstrated for the first time that implicit-atlas image registration is inherently independent of 

the mid-space, which led to deriving a new data term for deformable image registration. We have also 

derived a new regularization term by analytically reformulating the regularization independently of the mid-

space. The independence of the cost function from the image-to-atlas transformations alleviates the need 

for enforcing artificial anti-drift constraints that potentially restrict the space of possible deformations. We 

have evaluated our method through experiments on 2D and 3D brain magnetic resonance image datasets, 

and shown that the proposed data term often outperformed competing methods. Future research includes: 

stabilizing the MSI regularization via a proper projection of the Jacobian matrix onto the space of 

diffeomorphism, detailed implementation and thorough validation of MSI group-wise deformable 

registration, and incorporation of the MSI cost function in surface-based registration. 
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Appendix A. Extension to group-wise registration 

In this appendix, we show how our MSI framework can be extended for the registration of 𝑁 images 

𝐼1, … , 𝐼𝑁: 𝛺 → ℝ, where 𝛺 ⊆ ℝ𝑑. For group-wise registration, we want to compute the set of regular 

transformations {𝑇𝑖𝑗: 𝛺 → 𝛺|𝑖, 𝑗 = 1,… ,𝑁}, where 𝑇𝑖𝑗 deforms 𝐼𝑖 so as to make 𝐼𝑖 ∘ 𝑇𝑖𝑗 and 𝐼𝑗 most similar 

to each other. In a common approach to group-wise registration, the pairwise transformations {𝑇𝑖𝑗} are 

parameterized as 𝑇𝑖𝑗 = 𝑇𝑖 ∘ 𝑇𝑗
−1, where 𝑇1, … , 𝑇𝑁 are transformations that take 𝐼1, … , 𝐼𝑁 to a mid-space (see 

Section 1 for references to the mid-space approaches). 

Similar to the pairwise case of Eq. (1), we define the SSD data term as: 

 

�̃�(𝐼1, … , 𝐼𝑁, 𝐴; 𝑇1, … , 𝑇𝑁) ≔∑∫ (𝐼𝑖(𝑥) − (𝐴 ∘ 𝑇𝑖
−1)(𝑥))

2
d𝑥

Ω

𝑁

𝑖=1

. (24) 

After applying the change of variables 𝑥 = 𝑇𝑖(𝑦) in each integral, the �̂�(𝑦) minimizing the cost function is 

derived as (Ma et al., 2008):  

 
�̂�(𝑦) =

∑ 𝐽𝑖(𝑦)(𝐼𝑖 ∘ 𝑇𝑖)(𝑦)𝑖

∑ 𝐽𝑖(𝑦)𝑖
, (25) 

where 𝐽𝑖(𝑦) ≔ det 𝜕𝑇𝑖(𝑦). The atlas can now be eliminated from Eq. (24) by substituting 𝐴(𝑦) with �̂�(𝑦), 

leading to an implicit-atlas data term: 
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�̃�(𝐼1, … , 𝐼𝑁, �̂�; 𝑇1, … , 𝑇𝑁) = ∫ ∑((𝐼𝑖 ∘ 𝑇𝑖)(𝑦) − �̂�(𝑦))
2
𝐽𝑖(𝑦)

𝑁

𝑖=1

d𝑦
Ω

= ∫ ∑((𝐼𝑖 ∘ 𝑇𝑖)(𝑦) −
∑ 𝐽𝑘(𝑦)(𝐼𝑘 ∘ 𝑇𝑘)(𝑦)𝑘

∑ 𝐽𝑘(𝑦)𝑘
)

2

𝐽𝑖(𝑦)

𝑁

𝑖=1

d𝑦
Ω

=∑∫(𝐼𝑖
2 ∘ 𝑇𝑖)(𝑦)𝐽𝑖(𝑦)d𝑦

Ω

𝑁

𝑖=1

+∫ (
∑ 𝐽𝑘(𝑦)(𝐼𝑘 ∘ 𝑇𝑘)(𝑦)𝑘

∑ 𝐽𝑘(𝑦)𝑘
)

2

∑𝐽𝑖(𝑦)

𝑁

𝑖=1

d𝑦
Ω

− 2∫
∑ 𝐽𝑘(𝑦)(𝐼𝑘 ∘ 𝑇𝑘)(𝑦)𝑘

∑ 𝐽𝑘(𝑦)𝑘
∑𝐽𝑖(𝑦)(𝐼𝑖 ∘ 𝑇𝑖)(𝑦)

𝑁

𝑖=1

d𝑦
Ω

= ∫ ∑𝐼𝑖
2(𝑥)

𝑁

𝑖=1

d𝑥
Ω

−∫
(∑ 𝐽𝑖(𝑦)(𝐼𝑖 ∘ 𝑇𝑖)(𝑦)𝑖 )2

∑ 𝐽𝑖(𝑦)𝑖
d𝑦

Ω

. 

(26) 

The first term of the expression derived above, which was obtained by the changes of variables 𝑥 = 𝑇𝑖(𝑦), 

is constant with respect to the transformations, and so can be ignored in the optimization. Consequently, 

the problem is reduced to maximizing the following data term: 

 
𝐷(𝐼1, … , 𝐼𝑁; 𝑇1, … , 𝑇𝑁) ≔ ∫

(∑ 𝐽𝑖(𝑦)(𝐼𝑖 ∘ 𝑇𝑖)(𝑦)𝑖 )2

∑ 𝐽𝑖(𝑦)𝑖
d𝑦

Ω

. (27) 

An important property of this data term is that composing 𝑇1, … , 𝑇𝑁 with a new transformation 𝑆 does not 

change 𝐷: 

 
𝐷(𝐼1, … , 𝐼𝑁; 𝑇1 ∘ 𝑆,… , 𝑇𝑁 ∘ 𝑆) = ∫

(∑ (𝐽𝑖 ∘ 𝑆)(𝑧)𝐽𝑆(𝑧)(𝐼𝑖 ∘ 𝑇𝑖 ∘ 𝑆)(𝑧)𝑖 )2

∑ (𝐽𝑖 ∘ 𝑆)(𝑧)𝐽𝑆(𝑧)𝑖
d𝑧

Ω

= ∫
(∑ (𝐽𝑖 ∘ 𝑆)(𝑧)(𝐼𝑖 ∘ 𝑇𝑖 ∘ 𝑆)(𝑧)𝑖 )2

∑ (𝐽𝑖 ∘ 𝑆)(𝑧)𝑖
𝐽𝑆(𝑧)d𝑧

Ω

= ∫
(∑ 𝐽𝑖(𝑦)(𝐼𝑖 ∘ 𝑇𝑖)(𝑦)𝑖 )2

∑ 𝐽𝑖(𝑦)𝑖
d𝑦

Ω

                                   

= 𝐷(𝐼1, … , 𝐼𝑁; 𝑇1, … , 𝑇𝑁), 

(28) 

where 𝐽𝑆(𝑧) ≔ det 𝜕𝑆(𝑧), and 𝑦 ≔ 𝑆(𝑧) with d𝑦 = 𝐽𝑆(𝑧)d𝑧. The shrinkage-type issues that were 

mentioned in Section 2.1 are alleviated because of this property of the atlas-based registration, which is 

thanks to the fact that the atlas and the images are compared in the physically-meaningful native image 

spaces, as opposed to the abstract mid-space. This property also implies the inherent independence of the 

data term from the mid-space, which we exploit here. We first choose the native space of one of the images 

– say, the first image – as a hub, and define 𝑄𝑖 ≔ 𝑇𝑖1 = 𝑇𝑖 ∘ 𝑇1
−1. Note that 𝑄1 = Id is fixed as the identity 

transformation. We then rewrite the objective function with respect to 𝑇1 and 𝑄2, … , 𝑄𝑁. To obtain {𝑇𝑖𝑗}, it 

will be sufficient to solve for 𝑄2, … , 𝑄𝑁 (but not 𝑇1), since 𝑇𝑖𝑗 = 𝑇𝑖 ∘ 𝑇𝑗
−1 = 𝑄𝑖 ∘ 𝑇1 ∘ 𝑇1

−1 ∘ 𝑄𝑗
−1 = 𝑄𝑖 ∘

𝑄𝑗
−1. With the new parameterization, the data term to be maximized becomes: 

 𝐷(𝐼1, … , 𝐼𝑁; 𝑇1, … , 𝑇𝑁) = 𝐷(𝐼1, … , 𝐼𝑁; 𝑇1, 𝑄2 ∘ 𝑇1… ,𝑄𝑁 ∘ 𝑇1) 
= 𝐷(𝐼1, … , 𝐼𝑁; Id, 𝑄2, … , 𝑄𝑁), 

(29) 
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where we used the composition property in Eq. (28). With the data term being independent of 𝑇1, … , 𝑇𝑁, 

the mid-space disappears, thereby eliminating the problem of the mid-space drift and the need for anti-drift 

constraints as well. 

As for the Tikhonov regularization term, we define similarly to Eq. (5): 

 

�̃�(𝑇1, … , 𝑇𝑁) ≔∑∫ ‖𝜕 (𝑇𝑖
−1(𝑥)) − 𝕀‖

𝐹

2
d𝑥

Ω

𝑁

𝑖=1

. (30) 

Choosing 𝐼1 as a hub again, by following similar calculations as in Section 2.3.2, minimizing �̃�(𝑇1, … , 𝑇𝑁) 

can be seen to be equivalent to maximizing the following: 

 
∫ (‖𝑉(𝑥)𝑈−1(𝑥)T‖

𝐹

2
− ‖𝜕(𝑇1

−1(𝑥))𝑈(𝑥) − 𝑉(𝑥)𝑈−1(𝑥)T‖
𝐹

2
) d𝑥

Ω

, (31) 

where: 

 

𝑈(𝑥)𝑈(𝑥)T ≔∑𝜕𝑄𝑖
−1(𝑥)𝐶𝑖(𝑥)

𝑁

𝑖=1

, 

𝑉(𝑥) ≔∑𝐶𝑖(𝑥)

𝑁

𝑖=1

. 

(32) 

𝐶𝑖(𝑥) ≔ 𝐽𝑄𝑖(𝑥)𝜕𝑄𝑖
−1(𝑥)T is the cofactor matrix of 𝜕𝑄𝑖(𝑥), with 𝐽𝑄𝑖(𝑥) ≔ det 𝜕𝑄𝑖(𝑥).

14 Note that 

diffeomorphism (𝐽𝑖(𝑥) > 0) guarantees the existence of 𝑈(𝑥) that satisfies Eq. (32), since the right hand 

side, ∑ 𝜕𝑄𝑖
−1(𝑥)𝐶𝑖(𝑥)𝑖 = ∑ 𝐽𝑄𝑖(𝑥)𝜕𝑄𝑖

−1(𝑥)𝜕𝑄𝑖
−1(𝑥)T𝑖 , is a linear combination of positive semi-definite 

matrices with positive weighting, and therefore is itself positive semi-definite. 

Since the data term, 𝐷(𝐼1, … , 𝐼𝑁; Id, 𝑄2, … , 𝑄𝑁), is independent of 𝑇1, the objective function reaches its 

maximum value with respect to 𝑇1 when the second Frobenius norm in Eq. (31) equals zero, which happens 

for �̂�1 that satisfies 𝜕 (�̂�1
−1(𝑥)) = 𝑉(𝑥)(𝑈(𝑥)𝑈(𝑥)𝑇)−1. As mentioned before, we do not need the value of 

�̂�1, since the 𝑁 − 1 transformations 𝑄2, … , 𝑄𝑁 provide us with the complete solution to group-wise 

registration. Thus, we proceed by assigning 𝑇1 = �̂�1, thereby reducing the regularization term to only its 

first Frobenius norm, expanded as: 

 

𝑅(𝑄2, … , 𝑄𝑁) ≔ ∫ tr [(∑𝐶𝑖(𝑥)

𝑁

𝑖=1

)(∑𝜕𝑄𝑖
−1(𝑥)𝐶𝑖(𝑥)

𝑁

𝑖=1

)

−1

(∑𝐶𝑖(𝑥)

𝑁

𝑖=1

)

T

] d𝑥
Ω

. (33) 

Therefore, registration will be performed by maximizing the following objective function: 

 �̂�2, … , �̂�𝑁 = argmax
𝑄2,…,𝑄𝑁

𝐷(𝐼1, … , 𝐼𝑁; Id, 𝑄2, … , 𝑄𝑁) + 𝜆𝑅(𝑄2, … , 𝑄𝑁), (34) 

                                                           
14 Recall that 𝑄1(𝑦) = 𝑦, 𝜕𝑄1(𝑦) = 𝕀, 𝐶1(𝑦) = 𝕀, and 𝐽𝑄1(𝑦) = 1. 
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where 𝜆 is the positive regularization parameter. In the continuous case, this objective function – originating 

from Eq. (24) and Eq. (30) – is unbiased towards the choice of the hub image (here 𝐼1). See Section 2.4 for 

a discussion on discretization artifacts. 

Note that using the MSI group-wise registration is not helpful for template construction, since the template 

exists in the mid-space that is eliminated. 

Appendix B. Variation of an integral that includes the Jacobian determinant 

We use the following Lemma to compute the derivative of an integral term with respect to a transformation. 

Lemma. For 𝑇:Ω → Ω (with Ω ⊆ ℝ𝑑), 𝐹: Ω2×𝑅+ → ℝ, and 𝐽(𝑥) ≔ det 𝜕𝑇(𝑥), let: 

 
𝜑 ≔ ∫𝐹(𝑇(𝑥), 𝐽(𝑥), 𝑥)d𝑥

Ω

. (35) 

The variation of 𝜑 with respect to 𝑇 is: 

 δ𝜑

δ𝑇
= ∇𝑇𝐹 − (𝐽∇𝑇 + 𝐶∇𝑥)

𝜕𝐹

𝜕𝐽
−
𝜕2𝐹

𝜕𝐽2
𝐶∇𝐽, (36) 

where 𝐶 is the cofactor matrix of the Jacobian matrix 𝜕𝑇, and ∇𝑇 and ∇𝑥 are vectors of gradient with respect 

to the elements of 𝑇 and 𝑥, respectively. The notation (𝑥) has been dropped for brevity. 

Proof. We start by using the following variation formula: 

 δ𝜑

δ𝑇
= ∇𝑇𝐹 − div ∇𝜕𝑇𝐹, (37) 

where ∇𝜕𝑇 is the matrix of the gradient with respect to the elements of 𝜕𝑇, and div𝑋 ≔ (∇T𝑋T)
T

. Since in 

Eq. (35), 𝜕𝑇 only appears in the Jacobian determinant, 𝐽, the chain rule implies that: 

 
∇𝜕𝑇𝐹 =

𝜕𝐹

𝜕𝐽
∇𝜕𝑇𝐽. (38) 

Next we apply the product rule: 

 
div ∇𝜕𝑇𝐹 = (∇𝜕𝑇𝐽)∇ (

𝜕𝐹

𝜕𝐽
) +

𝜕𝐹

𝜕𝐽
div ∇𝜕𝑇𝐽. (39) 

According to Eq. (37), div ∇𝜕𝑇𝐽 is the variation of −∫ 𝐽(𝑥)d𝑥
Ω

 with respect to 𝑇. The change of variables 

𝑧 ≔ 𝑇(𝑥), with d𝑧 = 𝐽(𝑥)d𝑥, however, reveals that this integral is constant, −∫ 𝐽(𝑥)d𝑥
Ω

= −∫ d𝑧
Ω

=

−|Ω|, making its variation vanish: div ∇𝜕𝑇𝐽 = 0. 

Given that ∇𝜕𝑇𝐽 = 𝐶, the first term in the right-hand side of Eq. (39) can be expanded by the chain rule as: 

 
(∇𝜕𝑇𝐽)∇ (

𝜕𝐹

𝜕𝐽
) = 𝐶∇ (

𝜕𝐹

𝜕𝐽
) = 𝐶∇𝑥 (

𝜕𝐹

𝜕𝐽
) + 𝐶𝜕𝑇T∇𝑇 (

𝜕𝐹

𝜕𝐽
) +

𝜕2𝐹

𝜕𝐽2
𝐶∇𝐽. (40) 
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The matrix inversion rule, 𝜕𝑇−1 =
1

𝐽
𝐶T, leads to 𝐶𝜕𝑇T = 𝐽𝕀. Therefore: 

 
(∇𝜕𝑇𝐽)∇ (

𝜕𝐹

𝜕𝐽
) = 𝐶∇𝑥 (

𝜕𝐹

𝜕𝐽
) + 𝐽∇𝑇 (

𝜕𝐹

𝜕𝐽
) +

𝜕2𝐹

𝜕𝐽2
𝐶∇𝐽. (41) 

Combining Eqs. (37,39,41) proves the Lemma. 

□ 

A particular use of this lemma is in compositive updates, where the following needs to be computed: 

 
𝜕𝑇T

δ𝜑

δ𝑇
= 𝜕𝑇T∇𝑇 (𝐹 − 𝐽

𝜕𝐹

𝜕𝐽
) − 𝐽∇𝑥

𝜕𝐹

𝜕𝐽
−
𝜕2𝐹

𝜕𝐽2
𝐽∇𝐽. (42) 

In particular, for the weighted SSD, 𝐹(𝑇(𝑥), 𝐽(𝑥), 𝑥) = (𝐼1(𝑥) − (𝐼2 ∘ 𝑇)(𝑥))
2
𝑓(𝐽(𝑥)), we have: 

 
𝜕𝑇T

δ𝜑

δ𝑇
= −2(𝐼1 − 𝐼2 ∘ 𝑇)[(𝑓(𝐽) − 𝑔(𝐽))∇𝐼1 + 𝑔(𝐽)∇(𝐼2 ∘ 𝑇)] + (𝐼1 − 𝐼2 ∘ 𝑇)

2∇(𝑔(𝐽)), (43) 

where 𝑔(𝐽) ≔ 𝑓(𝐽) − 𝐽𝑓′(𝐽). Letting 𝑓(𝐽) =
𝐽

1+𝐽
 and 𝑓(𝐽) =

1+𝐽

2
 lead to Eq. (14) and Eq. (21), respectively. 

Appendix C. Variation of the regularization integral 

We compute the variation of 𝑅(𝑇) (Eq. (11)), starting from Eq. (37) with 𝐹 = tr[ΓTΛ−1Γ], where  Γ ≔

𝜕𝑇 − 𝕀 and Λ ≔ 𝕀 +
1

𝐽
𝜕𝑇𝜕𝑇T. Since 𝐹 only depends on the derivative of 𝑇 (but not on 𝑇 itself), we have 

∇𝑇𝐹 = 0, and: 

 δ𝑅(𝑇)

δ𝑇
= −div ∇𝜕𝑇𝐹. (44) 

We now compute (∇𝜕𝑇𝐹)𝑖𝑗 (the element 𝑖, 𝑗 of the matrix ∇𝜕𝑇𝐹) by deriving 𝐹 with respect to 𝜕𝑇𝑖𝑗. For 

brevity, we shall fix 𝑖 and 𝑗 and denote the derivative of a matrix 𝑋 with respect to 𝜕𝑇𝑖𝑗 simply as 𝑋′. Using 

the differentiation rules for the inverse, (Λ−1)′ = −Λ−1Λ′Λ−1, and the product, one can verify that: 

 𝐹′ = tr[ΓTΛ−1Γ]′ = tr[(2Γ′T − ΓTΛ−1Λ′)Λ−1Γ]. (45) 

By definition, Γ′ = (𝜕𝑇 − 𝕀)′ = Θ𝑖𝑗, where Θ𝑖𝑗 is the 𝑑×𝑑 matrix that has 1 as its element 𝑖, 𝑗 and 0 

elsewhere; i.e., (Θ𝑖𝑗)
𝑘𝑙
= 𝛿𝑘𝑖𝛿𝑙𝑗, with 𝛿 the Kronecker delta. As for Λ′, we have: 

 
Λ′ = (𝕀 +

1

𝐽
𝜕𝑇𝜕𝑇T)

′

= −
𝐶𝑖𝑗

𝐽2
𝜕𝑇𝜕𝑇T +

1

𝐽
Θ𝑖𝑗𝜕𝑇T +

1

𝐽
𝜕𝑇Θ𝑗𝑖 , (46) 

where we used 𝐽′ = 𝐶𝑖𝑗, with 𝐶 the cofactor matrix of 𝜕𝑇. By substituting for Γ, Γ′, Λ, and Λ′ in Eq. (45), 

while using the trace properties tr[𝑋T𝑋] = ‖𝑋‖𝐹
2  and tr[Θ𝑖𝑗𝑋] = 𝑋𝑗𝑖, Eq. (44) leads to the gradient 

presented in Eq. (15). 

 



26 
 

References 

Aganj, I., Iglesias, J.E., Reuter, M., Sabuncu, M.R., Fischl, B., 2015a. Mid-space-independent symmetric 

data term for pairwise deformable image registration. Medical Image Computing and Computer-Assisted 

Intervention – MICCAI, Munich, Germany. 

Aganj, I., Reuter, M., Sabuncu, M.R., Fischl, B., 2015b. Avoiding symmetry-breaking spatial non-

uniformity in deformable image registration via a quasi-volume-preserving constraint. NeuroImage 106, 

238-251. 

Aganj, I., Yeo, B.T.T., Sabuncu, M.R., Fischl, B., 2013. On removing interpolation and resampling artifacts 

in rigid image registration. Image Processing, IEEE Transactions on 22, 816-827. 

Aljabar, P., Bhatia, K.K., Murgasova, M., Hajnal, J.V., Boardman, J.P., Srinivasan, L., Rutherford, M.A., 

Dyet, L.E., Edwards, A.D., Rueckert, D., 2008. Assessment of brain growth in early childhood using 

deformation-based morphometry. NeuroImage 39, 348-358. 

Allassonnière, S., Amit, Y., Trouvé, A., 2007. Towards a coherent statistical framework for dense 

deformable template estimation. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 

69, 3-29. 

Andersson, J.L.R., Jenkinson, M., Smith, S., 2007. Non-linear registration aka Spatial normalisation. 

FMRIB Centre, Oxford. 

Ashburner, J., Ridgway, G.R., 2013. Symmetric diffeomorphic modelling of longitudinal structural MRI. 

Frontiers in neuroscience 6. 

Avants, B., Gee, J.C., 2004. Geodesic estimation for large deformation anatomical shape averaging and 

interpolation. NeuroImage 23, Supplement 1, S139-S150. 

Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C., 2008. Symmetric diffeomorphic image registration 

with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical 

image analysis 12, 26-41. 

Beg, M.F., Khan, A., 2007. Symmetric data attachment terms for large deformation image registration. 

Medical Imaging, IEEE Transactions on 26, 1179-1189. 

Bhatia, K.K., Hajnal, J.V., Puri, B.K., Edwards, A.D., Rueckert, D., 2004. Consistent groupwise non-rigid 

registration for atlas construction. Biomedical Imaging: Nano to Macro, 2004. IEEE International 

Symposium on, pp. 908-911 Vol. 901. 

Bouix, S., Rathi, Y., Sabuncu, M., 2010. Building an Average Population HARDI Atlas. MICCAI 

Workshop on CD-MRI. 

Cachier, P., Rey, D., 2000. Symmetrization of the non-rigid registration problem using inversion-invariant 

energies: Application to multiple sclerosis. In: Delp, S., DiGoia, A., Jaramaz, B. (Eds.), Medical Image 

Computing and Computer-Assisted Intervention – MICCAI 2000. Springer Berlin / Heidelberg, pp. 697-

708. 



27 
 

Castadot, P., Lee, J.A., Parraga, A., Geets, X., Macq, B., Grégoire, V., 2008. Comparison of 12 deformable 

registration strategies in adaptive radiation therapy for the treatment of head and neck tumors. Radiotherapy 

and Oncology 89, 1-12. 

Chen, Y., Ye, X., 2010. Inverse Consistent Deformable Image Registration. In: Alladi, K., Klauder, J.R., 

Rao, C.R. (Eds.), The Legacy of Alladi Ramakrishnan in the Mathematical Sciences. Springer New York, 

pp. 419-440. 

Christensen, G.E., Johnson, H.J., 2001. Consistent image registration. Medical Imaging, IEEE Transactions 

on 20, 568-582. 

Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.-O., Chupin, M., Benali, H., 

Colliot, O., 2011. Automatic classification of patients with Alzheimer's disease from structural MRI: A 

comparison of ten methods using the ADNI database. NeuroImage 56, 766-781. 

Fischl, B., 2012. FreeSurfer. NeuroImage 62, 774-781. 

Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der, K.A., Killiany, R., 

Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M., 2002. Whole brain 

segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341-355. 

Fischl, B., Stevens, A.A., Rajendran, N., Yeo, B.T.T., Greve, D.N., Van Leemput, K., Polimeni, J.R., 

Kakunoori, S., Buckner, R.L., Pacheco, J., Salat, D.H., Melcher, J., Frosch, M.P., Hyman, B.T., Grant, P.E., 

Rosen, B.R., van der Kouwe, A.J.W., Wiggins, G.C., Wald, L.L., Augustinack, J.C., 2009. Predicting the 

location of entorhinal cortex from MRI. NeuroImage 47, 8-17. 

Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L., 2011. Unbiased average 

age-appropriate atlases for pediatric studies. NeuroImage 54, 313-327. 

Fox, N.C., Ridgway, G.R., Schott, J.M., 2011. Algorithms, atrophy and Alzheimer's disease: Cautionary 

tales for clinical trials. NeuroImage 57, 15-18. 

Geng, X., Christensen, G.E., Gu, H., Ross, T.J., Yang, Y., 2009. Implicit reference-based group-wise image 

registration and its application to structural and functional MRI. NeuroImage 47, 1341-1351. 

Grenander, U., Miller, M.I., 1998. Computational anatomy: an emerging discipline. Q. Appl. Math. LVI, 

617-694. 

Guimond, A., Meunier, J., Thirion, J.-P., 2000. Average Brain Models: A Convergence Study. Computer 

Vision and Image Understanding 77, 192-210. 

Hart, G.L., Zach, C., Niethammer, M., 2009. An optimal control approach for deformable registration. 

Computer Vision and Pattern Recognition Workshops, 2009. CVPR Workshops 2009. IEEE Computer 

Society Conference on, pp. 9-16. 

Hua, X., Gutman, B., Boyle, C.P., Rajagopalan, P., Leow, A.D., Yanovsky, I., Kumar, A.R., Toga, A.W., 

Jack Jr, C.R., Schuff, N., Alexander, G.E., Chen, K., Reiman, E.M., Weiner, M.W., Thompson, P.M., 2011. 

Accurate measurement of brain changes in longitudinal MRI scans using tensor-based morphometry. 

NeuroImage 57, 5-14. 



28 
 

Joshi, S., Davis, B., Jomier, M., Gerig, G., 2004. Unbiased diffeomorphic atlas construction for 

computational anatomy. NeuroImage 23, Supplement 1, S151-S160. 

Kuczma, M., Choczewski, B., Ger, R., 1990. Iterative Functional Equations. Cambridge University Press. 

Leow, A.D., Yanovsky, I., Ming-Chang, C., Lee, A.D., Klunder, A.D., Lu, A., Becker, J.T., Davis, S.W., 

Toga, A.W., Thompson, P.M., 2007. Statistical Properties of Jacobian Maps and the Realization of 

Unbiased Large-Deformation Nonlinear Image Registration. Medical Imaging, IEEE Transactions on 26, 

822-832. 

Lorenzen, P., Davis, B., Joshi, S., 2004. Model based symmetric information theoretic large deformation 

multi-modal image registration. Biomedical Imaging: Nano to Macro, 2004. IEEE International 

Symposium on, pp. 720-723 Vol. 721. 

Lorenzen, P., Prastawa, M., Davis, B., Gerig, G., Bullitt, E., Joshi, S., 2006. Multi-modal image set 

registration and atlas formation. Medical image analysis 10, 440-451. 

Lorenzi, M., Ayache, N., Frisoni, G.B., Pennec, X., 2013. LCC-Demons: A robust and accurate symmetric 

diffeomorphic registration algorithm. NeuroImage 81, 470-483. 

Ma, J., Miller, M.I., Trouvé, A., Younes, L., 2008. Bayesian template estimation in computational anatomy. 

NeuroImage 42, 252-261. 

Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L., 2007. Open Access 

Series of Imaging Studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and 

demented older adults. Journal of Cognitive Neuroscience 19, 1498-1507. 

Miller, M., Banerjee, A., Christensen, G., Joshi, S., Khaneja, N., Grenander, U., Matejic, L., 1997. 

Statistical methods in computational anatomy. Statistical Methods in Medical Research 6, 267-299. 

Noblet, V., Heinrich, C., Heitz, F., Armspach, J.-P., 2008. Symmetric nonrigid image registration: 

Application to average brain templates construction. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. 

(Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008. Springer Berlin / 

Heidelberg, pp. 897-904. 

Noblet, V., Heinrich, C., Heitz, F., Armspach, J.-P., 2012. An efficient incremental strategy for constrained 

groupwise registration based on symmetric pairwise registration. Pattern Recognition Letters 33, 283-290. 

Reuter, M., Gerstner, E., Rapalino, O., Batchelor, T., Rosen, B., Fischl, B., 2014. Impact of MRI head 

placement on glioma response assessment. Journal of Neuro-Oncology 118, 123-129. 

Reuter, M., Rosas, H.D., Fischl, B., 2010. Highly accurate inverse consistent registration: A robust 

approach. NeuroImage 53, 1181-1196. 

Reuter, M., Schmansky, N.J., Rosas, H.D., Fischl, B., 2012. Within-subject template estimation for 

unbiased longitudinal image analysis. NeuroImage 61, 1402-1418. 

Rey, D., Subsol, G., Delingette, H., Ayache, N., 2002. Automatic detection and segmentation of evolving 

processes in 3D medical images: Application to multiple sclerosis. Medical image analysis 6, 163-179. 



29 
 

Sabuncu, M., Yeo, B., Van Leemput, K., Vercauteren, T., Golland, P., 2009. Asymmetric image-template 

registration. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (Eds.), Medical Image 

Computing and Computer-Assisted Intervention – MICCAI 2009. Springer Berlin / Heidelberg, pp. 565-

573. 

Škrinjar, O., Bistoquet, A., Tagare, H., 2008. Symmetric and Transitive Registration of Image Sequences. 

International Journal of Biomedical Imaging. 

Sotiras, A., Davatzikos, C., Paragios, N., 2013. Deformable Medical Image Registration: A Survey. 

Medical Imaging, IEEE Transactions on 32, 1153-1190. 

Studholme, C., Cardenas, V., 2004. A template free approach to volumetric spatial normalization of brain 

anatomy. Pattern Recognition Letters 25, 1191-1202. 

Tagare, H., Groisser, D., Skrinjar, O., 2009. Symmetric non-rigid registration: A geometric theory and some 

numerical techniques. Journal of Mathematical Imaging and Vision 34, 61-88. 

Thompson, W.K., Holland, D., 2011. Bias in tensor based morphometry Stat-ROI measures may result in 

unrealistic power estimates. NeuroImage 57, 1-4. 

Trouvé, A., Younes, L., 2000. Diffeomorphic matching problems in one dimension: Designing and 

minimizing matching functionals. Computer Vision - ECCV 2000. Springer Berlin / Heidelberg, pp. 573-

587. 

Vercauteren, T., Pennec, X., Perchant, A., Ayache, N., 2009. Diffeomorphic demons: Efficient non-

parametric image registration. NeuroImage 45, S61-S72. 

Yang, D., Li, H., Low, D.A., Deasy, J.O., Naqa, I.E., 2008. A fast inverse consistent deformable image 

registration method based on symmetric optical flow computation. Physics in medicine and biology 53, 

6143. 

Ye, X., Chen, Y., 2009. A New Algorithm for Inverse Consistent Image Registration. In: Bebis, G., Boyle, 

R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Pajarola, R., Lindstrom, P., Hinkenjann, A., 

Encarnação, M., Silva, C., Coming, D. (Eds.), Advances in Visual Computing. Springer Berlin / Heidelberg, 

pp. 855-864. 

Yushkevich, P.A., Avants, B.B., Das, S.R., Pluta, J., Altinay, M., Craige, C., 2010. Bias in estimation of 

hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: 

An illustration in ADNI 3 T MRI data. NeuroImage 50, 434-445. 

 


