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Structural Brain Network Augmentation via Kirchhoff’s Laws 
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TARGET AUDIENCE: Researchers studying structural brain connectivity using diffusion MRI tractography. 

PURPOSE: Diffusion-weighted (DW) MRI tractography is a noninvasive tool that can quantify structural 
connectivity between brain regions. Networks representing connectivity among different brain areas, known as the 
connectome1, can be used to study how brain architecture is influenced by genetic factors, and changes during 
development and with disease. Standard approaches to compute structural connectivity often define the connection 
strength between two brain regions based on the tractography streamlines between them. Such a direct fiber bundle 
is expected to be the major signal carrier, however, multi-synaptic neural pathways – connecting the two areas 
through other regions – may also provide connectivity.2 Here we propose to exploit the mathematical convenience 
provided by Kirchhoff’s circuit laws to account for indirect pathways. We evaluate our model by assessing how 
well the network-derived measures can distinguish Alzheimer’s disease patients from healthy controls. 

METHODS: We model the multiple pathways connecting two regions starting with two simple cases. Figure 1 (left) shows two different fiber bundles connecting 
regions A and B, with ݔ and ݕ being the two connectivity measures corresponding to the two bundles, as returned by the tractography method. In this case, since more 
neural connections are expected to increase the connectivity, we consider the total connectivity between the two regions to be the sum of the individual bundle 
connectivity strengths, as ܥ஺,஻ ≔ ݔ +  ,The second basic case of our model, depicted in Fig. 1 (right), concerns the indirect connections between two regions, C and E .ݕ
when the tractography has not returned any direct connections between them, but a third region, D, indirectly connects the two through fiber bundles connecting D to C 
and E, with strengths ݖ and ݓ, respectively. In this case, we consider the total connectivity between the two regions to be positive, but smaller than each of ݖ and ݓ. 
This is because the total connectivity is assumed to be bottlenecked by the weakest connectivity along the way (in colloquial terms: a chain is only as strong as its 
weakest link). To accommodate this, we model the connectivity in such a configuration as the inverse of the sum of inverses (i.e., twice the harmonic mean) of the 

individual connectivity strengths, as 
ଵ஼಴,ಶ ≔ ଵ௭ + ଵ௪. 

Some more complex connectivity networks can be modularized, where each module is one of the two prior cases, making it possible to compute the total connectivity 
between every pair of regions recursively. However, this is not generally possible for an arbitrary network; so we exploit the similarity of the basic cases of our model 
to those of the electrical circuits made solely of resistors, and calculate the total connectivity between pairs of regions similarly to well-developed techniques in 
electronics. By analogizing individual connectivity of each fiber bundle to the electrical conductance (inverse of resistance) of a resistor, the two basic cases of our 
model are seen to be similar to parallel and series circuits. Therefore we use the Kirchhoff’s circuit laws3 to compute the total connectivity between pairs of brain 
regions, using standard graph Laplacian methods. 

RESULTS: We validate the proposed model on a dataset of 200 subjects from the second phase 
of the Alzheimer’s Disease Neuroimaging Initiative (ADNI-2), composed of 50 cognitively 
normal controls, 74 early- and 39 late-stage mild cognitively impaired subjects (eMCI, lMCI), 
and 37 Alzheimer’s disease (AD) patients. A 3T GE Medical Systems scanner at 14 acquisition 
sites in North America was used to capture whole-head MR images. The images included T1-
weighted IR-FSPGR (spoiled gradient echo) anatomical scans (256×256 matrix; voxel size = 
1.2×1.0×1.0 mm³; T1= 400 ms; TE = 2.85 ms; flip angle = 11°). 46 DW images (35 cm field of 
view, 128×128 acquired matrix, reconstructed to a 256×256 matrix; voxel size: 2.7×2.7×2.7 mm³; 
scan time = 9 min) were collected that included 5 b0 T2-weighted images (with no diffusion 
sensitization) and 41 DW images with b = 1000 s/mm². The DW-MRI volumes were corrected 
for head motion and eddy current distortions using FSL4. The brain was automatically located in 
the images using the Brain Extraction Tool5, and the extra-cerebral tissue was removed from the 
T1 images using ROBEX6, along with FreeSurfer7 and manual editing. These anatomical scans 
were corrected for intensity inhomogeneity using N38 and aligned to the Colin27 brain template9 
using FSL FLIRT4. The T1 images were registered to the b0 images first linearly and then using 
inverse-consistent mutual information10. They were then segmented into 68 cortical regions (34 in 
each hemisphere) automatically computed using FreeSurfer7, and the label images were dilated 
with an isotropic box kernel of 5×5×5 voxels to ensure the labels overlapped with the white matter for the connectivity analysis. The orientation distribution functions 
in constant solid angle11 were constructed and given to the Hough-transform global probabilistic tractography12, which resulted in close to 10,000 fibers per subject. 

Next, we made the 68×68 raw connectivity matrices without applying any normalization based on the fiber count or seed region size, and also computed the proposed 
augmented network matrices. The matrices were thresholded with 10 different values, and 35 network measures2 were computed using the Brain Connectivity Toolbox1 
from all the matrices. For each pair of groups chosen from {Normal, eMCI, lMCI, AD}, we trained a Support Vector Machine (SVM) using the 35 network features and 
assessed the classification accuracy of each kind of network (raw or augmented) via a leave-one-out cross-validation. For each feature, kind of network, and pair of 
groups, we chose the threshold with the best t-test performance in distinguishing the groups. A third SVM was also trained using both sets of features from the raw and 
augmented networks (70 features). Figure 2 illustrates the classification error for each of the three methods. 

DISCUSSION: As Fig. 2 demonstrates, combining the raw and augmented matrices resulted in the best classification among the Normal, eMCI, and lMCI groups. 
When classifying AD versus Normal and lMCI, the proposed (combined) network augmentation did not change the results. This may be due to the fact that the direct 
connections in AD patients show enough difference for the classification to work well without considering multi-synaptic connections. The eMCI/AD classification is 
the only one where the proposed combined method degrades the classification by overfitting. Since in only 1 out of 6 comparisons the combination of raw and 
augmented networks results in higher error compared to using each network alone, we deduce that the two networks contain complementary information. 

CONCLUSION: We used techniques developed for processing the electrical circuit models to account for multi-synaptic connections in the brain and computed an 
augmented structural brain network from the DW-MRI data. We showed the combination of the features derived from raw and augmented networks to better classify 
the Normal, eMCI, and lMCI groups, not change the Normal/AD and lMCI/AD classifications, and worsen the eMCI/AD classification. The circuit model was only 
used for its computational convenience; we do not suggest that the resistive circuit is an appropriate model for the brain’s biological wiring. Future research includes 
further validation of the proposed method with regard to the degree of consistency between structural and functional brain networks, and investigating the effect of 
finding and keeping only relevant network features in the analysis. 
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Fig. 1.  Two basic cases of multiple connections.
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Fig. 2.  Classification error using different methods.
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