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ABSTRACT

Structural brain connectivity has been shown to be
sensitive to the changes that the brain undergoes during
Alzheimer’s disease (AD) progression. In this work, we
use our recently proposed structural connectivity quantifica-
tion measure derived from diffusion MRI, which accounts for
all possible neural pathways (direct and indirect) to quantify
brain connectivity. We analyze data from the ADNI-2 and
OASIS-3 datasets to derive relevant information for the study
of the changes that the brain undergoes in AD.

Index Terms— connectivity, conductance, diffusion
MRI, Alzheimer’s disease, dementia

1. INTRODUCTION

Brain structural connectivity can be measured by diffusion-
weighted MRI (dMRI) and reflects the physical connectiv-
ity through white-matter axon bundles between different re-
gions of interest (ROI). Differences in brain connectivity pat-
terns between healthy and diseased populations are poten-
tial indicators of changes in the brain “wiring” due to dis-
ease processes. In particular, Alzheimer’s disease (AD) has
been found to impact structural connectivity [1, 2]. Accu-
rately modeling structural connectivity may therefore reveal
the effects of AD progression in white-matter degeneration.

We have previous introduced a conductance method for
inferring structural brain connectivity from dMRI [3], which
accounts for all possible white-matter pathways, and is solved
globally. This method was shown to be more strongly corre-
lated with resting-state functional connectivity and more sen-
sitive to AD-related white-matter degeneration than standard
streamline tractography methods.

In this work, we extend our analysis to focus on the im-
pact that this measure could have in the study of AD demen-
tia. For this, we compare stuctural connectivity with cogni-
tive and volumetric measures, and we also analyze additional
datasets that provide examples of the power of our technique.

2. CONDUCTANCE MODEL

In our previous work [3]1, we extended the heat equation
method proposed by O’Donnell et al [4] with a combination
of differential circuit laws. We assigned to each image voxel a
local anisotropic conductivity value D, which is the diffusion
tensor computed from dMRI [5, 6]. By solving the partial
differential equation (PDE) [7],

−∇ · (D∇φi,j) = γi,j , (1)

for a certain current configuration γi,j between a pair of
source (i) and sink (j) voxels (see below), we find the po-
tential map φi,j for that specific configuration. ∇ and ∇· are
the gradient and the divergence operators, respectively.

We solve the PDE for a 1-ampere current (without loss of
generality) between a pair of voxels i and j: γi,j = δi − δj ,
where δk(x) := δ(x − xk), with xk the position of voxel k
and δ(·) the Dirac delta. To compute ROI-wise conductance,
we distribute the currents among the sets of voxels I and J
(the two ROIs) as: γI,J = 1

|I|
∑
i∈I

δi − 1
|J|

∑
j∈J

δj .

The conductance between two points can then be com-
puted with Ohm’s law as the ratio of the current to the poten-
tial difference. In our case, we set a 1-ampere current between
two voxels (or ROIs) i and j, and the potential difference is
φi,j(xi) − φi,j(xj). The conductance is therefore computed,
voxel-wise, as:

Ci,j =
1

φi,j(xi)− φi,j(xj)
. (2)

For ROI-wise connectivity, we have:

CI,J =
1

1
|I|

∑
i∈I

φI,J(xi)− 1
|J|

∑
j∈J

φI,J(xj)
. (3)

Using the superposition principle, we can use a sink point
s as reference and reduce the number of computations from
O(N2) to O(N):

−∇ · (D∇(φi,s − φj,s)) = −∇ · (D∇φi,s) +∇ · (D∇φj,s)
= (δi − δs)− (δj − δs) = δi − δj = −∇ · (D∇φi,j). (4)

1Our codes are publicly available at:
www.nitrc.org/projects/conductance
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High conductance (i.e. low resistance) between two
points represents a high degree of connectivity in our model.
Note that the ROIs are all at least weakly connected, and that
these maps could be thresholded.

3. ANALYSIS OF AD POPULATION

In this work, we evaluate how our conductance method
can help in discriminating different stages of AD. For this,
we use two publicly available datasets: the second phase
of Alzheimer’s Disease Neuroimaging Initiative (ADNI-2)
[8, 9], and the third phase of the Open Access Series of Imag-
ing Studies (OASIS-3) [10], which is the longitudinal neu-
roimaging, clinical, and cognitive dataset for normal aging
and AD. These two datasets allow us to compare structural
brain connectivity in different stages of the disease and corre-
late neuroimaging data to clinical cognitive scores.

3.1. MR data processing

The common pipeline for brain connectivity computation is:
segmentation of brain ROIs, quantification of brain connec-
tions from diffusion MRI, and aggregation of connectivity
values in a matrix. The constructed brain connectivity matrix
will describe how strongly different regions are connected to
each other according to the diffusion MRI acquisition of white
matter connections. We processed the MRI data similarly for
both datasets.

3.1.1. Structural MR processing:

We performed tissue segmentation and parcellation of the cor-
tex into ROIs using FreeSurfer2 [11]. The parcellation used
in this work is the Desikan-Killiany atlas [12].

3.1.2. Diffusion MRI processing:

Diffusion preprocessing was performed using the FSL soft-
ware3 [13] and included BET for brain extraction and EDDY
for eddy current and subject motion correction. From the
preprocessed dMRI images, we reconstructed the diffusion
tensors using the Diffusion Tensor Imaging (DTI) [5] recon-
struction module of DSI Studio4, which we then used as in-
put to our conductance approach. To compare with standard
approaches, we also ran DSI Studio streamline tractography
(ST) [14] using DTI, for direct comparison with our approach,
and using generalized q-sampling imaging (GQI) [15], which,
as opposed to DTI, can model multiple axon populations per
voxel. We generated 10000 fiber tracts and used the default
values for the rest of the parameters.

2FreeSurfer, https://surfer.nmr.mgh.harvard.edu
3FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
4DSI Studio, http://dsi-studio.labsolver.org

3.1.3. Brain connectivity matrix generation:

For comparison with our conductance model, we also com-
puted connectivity matrices using DSI Studio, considering the
connectivity measure to be the tract count normalized by the
median length, including tracts passing through the ROI. With
our conductance equation model, we are proposing a new way
of modeling and quantifying diffusion data. As we mentioned
in the previous section, we split the 1-ampere current across
voxels and solve the PDE once per ROI to find a conductance
measure between each pair of ROIs through superposition.

3.2. Data description

We considered two datasets (see Figure 1) that include sub-
jects across the AD dementia spectrum. In ADNI-2, we in-
cluded 213 subjects, where 78 subjects were cognitively nor-
mal (CN), 90 subjects had mild cognitive impairment (MCI),
a mid stage of the disease, and 47 subjects were diagnosed
with AD dementia. In OASIS-3, we considered 272 subjects
(its largest subset of subjects sharing identical scan descrip-
tion), where 187 subjects were cognitively normal, 38 sub-
jects had AD dementia, and 47 had other types of dementia
(e.g. vascular dementia, or AD dementia with depression or
additional symptoms).

(a) ADNI-2
Alzheimer's    
 Disease (AD) 
  47 subjects    22.1%

Mild Cognitive         
 Impairment (MCI)    
 89 subjects              

41.8%

 Cognitively
 Normal (CN) 
 78 subjects36.2%

(b) OASIS-3
Alzheimer's    
 Disease (AD) 
  38 subjects    

13.7%

Other dementias
 47 subjects     19.1%

Cognitively
 Normal (CN) 
 187 subjects

67.3%

Fig. 1. Demographics of the two datasets used here.

Other clinical data from these populations were also avail-
able: age, diagnosis, cerebral cortical and subcortical vol-
umes, β-Amyloid (a marker of AD) status, whether they have
the APOE gene alleles that are related to AD, and cognitive
scores such as the Clinical Dementia Rating (CDR) scale [16]
and the Mini–Mental State Examination score [17]. CDR
measures from 0 to 2 the cognitive capabilities of each sub-
ject, with 0 being cognitively normal and a higher number re-
flecting higher cognitive impairment. MMSE rates cognitive



capabilities from 0 to 30, with 30 being cognitively normal
and a lower value reflecting higher cognitive impairment.

4. BRAIN CONNECTIVITY RESULTS

We have previously shown [3] that the conductance measure
outperforms ST-derived connectivity at classifying disease
stages in ADNI-2. Figure 2 shows the disease stage random-
forest classification accuracy of this method with respect to
streamline tractography and compared to cortical thickness
and subcortical volume measures. When comparing the con-
ductance results to cortical thickness and subcortical volume
measures, which are the state of the art in MR-derived mark-
ers, the performance was similar. We tried combining these
two measures and the results did not improve, which suggests
that our measure of conductance most likely has overlap with
volumetric measures.

CN vs AD CN vs MCI MCI vs AD All stages
disease stage compared
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Fig. 2. Results extending [3]: The conductance method better
classifies across disease stages, when looking at different AD-
disease stages in ADNI-2 dataset.

With ADNI-2, we also tried classifying AD vs CN disease
stages among only the β-Amyloid positive subjects, with a
mean of 68% ± 20% accuracy. Performance was the same
for the conductance method, DTI ST and GQI ST.

In Figure 3, we attempted to predict CDR and MMSE
cognitive scores by using simple linear regression. We
achieved significant p-values in the case of ADNI-2 (Fig-
ure 3(a)), but not in OASIS-3 (Figure 3(b)). The prediction
values were similar to using volume values and better than
using ST-derived connectivity measures.

We further explored the OASIS-3 dataset (Figure 4) and
found the mean of the conductance matrix to be significantly
positively correlated with the MMSE score, cortical volumes,
and subcortical volumes, and significantly negatively corre-
lated with CDR and age. The correlations followed the same
trend for ADNI-2, however much more significantly: p =
0.00003 for CDR, p = 0.0004 for MMSE, p = 0.0000001
for age, and p = 0.000002 and p = 0.003 for cortical and
subcortical volumes respectively.

From the distribution of mean connectivity for the CN
and AD dementia groups in Figure 5, we can see that the
two distributions are overlapped but the means are separated
(t = 4.06, p = 0.00008). When we plot according to the
CDR scale, we see overlapped distributions again, with sep-
arated means: t = 4.04, p = 0.00007 between CDR= 0 and
CDR= 0.5, t = 2.31, p = 0.00007 between CDR= 0.5 and
CDR≥ 1, and t = 5.1, p = 0.000007 between CDR= 0 and
CDR≥ 1. However, classification results were not as good as
expected, probably due to unbalanced cohort size.

5. CONCLUSION

We have shown the applicability of our conductance method
to detect brain changes correlated with AD. This method is
sensitive to AD-related changes in both the diffusional and the
geometric properties of the brain white matter. For instance,
given that the method takes into account distances, changes in
subcortical volumes and cortical thickness would also affect
this measure of connectivity.

With the conductance method, we have shown better clas-
sification performance than streamline tractography in dis-
ease staging, and better prediction of cognitive scores and age
with ADNI-2 data when using a simple linear regression. In
OASIS-3, we see a correlation of the mean of conductance
with cognitive and volume measures. However, classification
of disease stages was not satisfactory for OASIS-3, probably
due to the very unbalanced sample size (many fewer cases of
AD than CN). Future work will be dedicated to the analysis
of more datasets.
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Fig. 3. Prediction of CDR, MMSE and age, from conductance matrices.
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Fig. 4. Correlation of mean conductance with CDR and MMSE scores, with cortical and subcortical volumes, and with age.
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