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 Abstract. Template matching is a popular approach to computer-aided detection 

of brain lesions from magnetic resonance (MR) images. The outcomes are often 

sufficient for localizing lesions and assisting clinicians in diagnosis. However, 

processing large MR volumes with three-dimensional (3D) templates is demand-

ing in terms of computational resources, hence the importance of the reduction 

of computational complexity of template matching, particularly in situations in 

which time is crucial (e.g. emergent stroke). In view of this, we make use of 3D 

Gaussian templates with varying radii and propose a new method to compute the 

normalized cross-correlation coefficient as a similarity metric between the MR 

volume and the template to detect brain lesions. Contrary to the conventional fast 

Fourier transform (FFT) based approach, whose runtime grows as 𝑂(𝑁 log 𝑁) 

with the number of voxels, the proposed method computes the cross-correlation 

in 𝑂(𝑁). We show through our experiments that the proposed method outper-

forms the FFT approach in terms of computational time, and retains comparable 

accuracy. 

1 Introduction 

A brain lesion is typically a region with abnormal tissue due to brain infection, malfor-

mation, injury, or disease. Lesions appear in various types of diseases including brain 

abscesses, tumors, stroke, and multiple sclerosis (MS). Brain imaging plays a pivotal 

role in early diagnosis and treatment of such diseases. The identification of the exact 

location of a lesion helps to determine the lesion characteristics and clinical implica-

tions, on the basis of which clinicians make diagnosis and plan treatment. Magnetic 

resonance imaging (MRI) is widely regarded as one of the most preferable imaging 

modalities for visualizing brain lesions, because it is free of ionizing radiation and 

yields high soft-tissue contrast. In conventional clinical diagnosis, two-dimensional 
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(2D) slices from the MR volume are visually screened, which is a time-consuming task 

and prone to inter-observer variations. A fully automatic lesion detection tool can make 

the screening task considerably faster, easier, and potentially more accurate. 

Researchers have shown interest in template matching for computer-aided detection 

of abnormal regions from medical images. In template matching, the image is searched 

and locally compared with a template image, until the locations in the image that best 

match the template are found. This process can then be repeated for a set of templates 

with various lesion sizes, eventually revealing the optimum location and size of the 

lesion. This technique has been explored in detecting masses from mammogram images 

[1]. Nodules [2] and metastatic lesions [3] in the lungs have also been detected by tem-

plate matching algorithms. In other work, an anatomical template was used to develop 

an ‘adaptive, template moderated, spatially varying statistical classification’ framework 

for segmentation of MS lesions and brain tumors [4]. The normalized cross-correlation 

coefficient (NCCC), which can be computed in the frequency domain, is a suitable 

choice for the similarity measure between three-dimensional (3D) templates and the 

MR volumes [5]. The cross-correlation coefficient has also been employed as a simi-

larity metric in contrast-enhanced MRI to detect small metastatic lesions [6], where the 

tumor growth pattern was simulated by a 3D spherical-shell template. In a different 

study, NCCC was used to measure the similarity between a black-blood MR pulse se-

quence and 3D spherical templates, and finally artificial neural network driven pattern 

classifier was adapted to characterize the metastatic lesions and non-tumor regions [7]. 

A challenging issue in existing template matching techniques is the determination of 

the optimal template size, especially since the runtime of the algorithm increases pro-

portionally to the number of tried sizes. Designing an efficient mathematical framework 

for faster computation of NCCC is therefore a critical task in the field of computer-

aided lesion detection. 

In this work, we focus on reducing the time complexity of the computation of NCCC 

with a 3D Gaussian template. Inspired by a fast method of computation of the continu-

ous wavelet transform [8], we consider the convolution with the 3D Gaussian template 

as multiple convolutions with a box kernel per the principle of central limit theorem, 

which takes linear time, 𝑂(𝑁), with respect to the number of voxels (Sec. 2). This is in 

contrast to the conventional fast Fourier transform (FFT) based method, with the com-

putational complexity of 𝑂(𝑁 log 𝑁). We show through our experiments that the pro-

posed method speeds up the computation of NCCC noticeably, while practically keep-

ing the same accuracy as the FFT-based approach (Sec. 3). 

2 Proposed Methodology 

Let 𝑓(𝑋⃑) be the 𝐷-dimensional input image the lesions of which are to be detected. In 

this work, the 𝐷-dimensional Gaussian is proposed as the template, which is approxi-

mated, following the central limit theorem, by convolving a 𝐷-dimensional symmetric 

and normalized box kernel, ℎ𝐷(∙), with itself 𝑛 − 1 times, denoted as ℎ𝐷
(𝑛)(∙) (aka B-

splines). In our experiments, a small value of 𝑛 = 2 or 𝑛 = 3 turned out to be suffi-



cient. The sizes of the box kernel and the engulfing template are 2𝑎 and 2𝑏 in all di-

mensions, respectively; i.e. ℎ𝐷(𝑋⃑)  is 1 (2𝑎)𝐷⁄  if 𝑋⃑ ∈ Ω𝑎 , and 0  otherwise, where 

Ω𝑙 ≔ {𝑋⃑||𝑋1|, … , |𝑋𝐷| ≤ 𝑙}. To ensure that the box kernel fits in the engulfing template 

after the convolutions, we restrict its size as: 0 < 𝑎 ≤ 𝑎max < 𝑏 𝑛⁄ . The similarity be-

tween the given image and the symmetric template with a varying 𝑎 can be computed 

from the following formula for the NCCC: 

NCCC(𝑋⃑) ≔

∫ (𝑓(𝑋⃑ + 𝑋′⃑⃑⃑⃑⃑) −   𝑓(̅𝑋⃑)) (ℎ𝐷
(𝑛)

(𝑋′⃑⃑⃑⃑⃑) −  ℎ𝐷
(𝑛)̅̅ ̅̅ ̅

) d𝑋′⃑⃑⃑⃑⃑
Ω𝑏

√∫ (𝑓(𝑋⃑ + 𝑋′⃑⃑⃑⃑⃑) −   𝑓(̅𝑋⃑))
2

d𝑋′⃑⃑⃑⃑⃑
Ω𝑏

√∫ (ℎ𝐷
(𝑛)

(𝑋′⃑⃑⃑⃑⃑) −  ℎ𝐷
(𝑛)̅̅ ̅̅ ̅

)
2

d𝑋′⃑⃑⃑⃑⃑
Ω𝑏

, 
(1) 

where 𝑓̅(𝑋⃑) and ℎ𝐷
(𝑛)̅̅ ̅̅ ̅

 represent the mean of the image inside the template centered at 

𝑋⃑, and the mean of the template, respectively. Our goal is to maximize NCCC with 

respect to both 𝑎  and 𝑋⃑ , to accurately localize the lesions. Since by definition 

∫ (ℎ𝐷
(𝑛)

(𝑋′⃑⃑⃑⃑⃑) −  ℎ𝐷
(𝑛)̅̅ ̅̅ ̅

) d𝑋′⃑⃑⃑⃑⃑
Ω𝑏

= 0, we can omit 𝑓̅(𝑋⃑) from the numerator of Eq. (1). We 

compute ∫ 𝑓(𝑋⃑ + 𝑋′⃑⃑⃑⃑⃑)ℎ𝐷
(𝑛)

(𝑋′⃑⃑⃑⃑⃑)d𝑋′⃑⃑⃑⃑⃑
Ω𝑏

= ∫ 𝑓(𝑋⃑ + 𝑋′⃑⃑⃑⃑⃑)ℎ𝐷
(𝑛)

(𝑋′⃑⃑⃑⃑⃑)d𝑋′⃑⃑⃑⃑⃑
ℝ𝐷 = (𝑓 ∗ ℎ𝐷

(𝑛)
)(𝑋⃑) . 

Thanks to the separability property of the template, i.e. ℎ𝐷
(𝑛)

(𝑋⃑) = ∏ ℎ1
(𝑛)

(𝑋𝑗)𝐷
𝑗=1 , we 

can first find the solution to this convolution for 𝐷 = 1 and then apply it sequentially 

for each dimension. For 𝐷 = 1, we note that: 

𝑓 ∗ ℎ1
(𝑛+1)

= (𝑓 ∗ ℎ1
(𝑛)

) ∗ ℎ1. (2) 

We assume (and then verify) the following solution for the convolution: 

(𝑓 ∗ ℎ1
(𝑛)

)(𝑋) =
1

(2𝑎)𝑛
∑ 𝛾𝑛,𝑘𝐹𝑛(𝑋 + 𝑘𝑎)

𝑛

𝑘=−𝑛

, (3) 

where 𝐹𝑛(𝑋) = ∫ 𝐹𝑛−1(𝑋′)d𝑋′
𝑋

−∞
, with 𝐹0 = 𝑓. Let 𝛾𝑛,𝑘 = 0 for |𝑘| > 𝑛, and also 

𝛾0,0 = 1 for the case with no convolution. Now we substitute Eq. (3) in Eq. (2): 

(𝑓 ∗ ℎ1
(𝑛+1)

)(𝑋) = (
1

(2𝑎)𝑛
∑ 𝛾𝑛,𝑘𝐹𝑛(𝑋 + 𝑘𝑎)

𝑛

𝑘=−𝑛

) ∗ ℎ1(𝑋)

=
1

(2𝑎)𝑛
∑ 𝛾𝑛,𝑘 ∫ 𝐹𝑛(𝑋 + 𝑘𝑎 + 𝑋′)ℎ1(𝑋′)d𝑋′

∞

−∞

𝑛

𝑘=−𝑛

 

=
1

(2𝑎)𝑛+1
∑ 𝛾𝑛,𝑘{𝐹𝑛+1(𝑋 + 𝑎(𝑘 + 1)) − 𝐹𝑛+1(𝑋 + 𝑎(𝑘 − 1))}

𝑛

𝑘=−𝑛

 

(4) 



=
1

(2𝑎)𝑛+1
∑ 𝛾𝑛,𝑘−1𝐹𝑛+1(𝑋 + 𝑎𝑘) −

1

(2𝑎)𝑛+1
∑ 𝛾𝑛,𝑘+1𝐹𝑛+1(𝑋 + 𝑎𝑘)

𝑛−1

𝑘=−𝑛−1

𝑛+1

𝑘=−𝑛+1

=
1

(2𝑎)𝑛+1
∑ (𝛾𝑛,𝑘−1 − 𝛾𝑛,𝑘+1)𝐹𝑛+1(𝑋 + 𝑎𝑘)

𝑛+1

𝑘=−(𝑛+1)

. 

According to Eq. (3): 

(𝑓 ∗ ℎ1
(𝑛+1)

)(𝑋) =
1

(2𝑎)𝑛+1
∑ 𝛾𝑛+1,𝑘𝐹𝑛+1(𝑋 + 𝑎𝑘)

𝑛+1

𝑘=−(𝑛+1)

. (5) 

This validates our assumption in Eq. (3) by induction, as it is true for the base case 

𝑛 = 0, and provided that it is true for 𝑛, it holds for 𝑛 + 1 with the following recursive 

relationship for 𝛾, which is obtained by coefficient matching between Eqs. (4) and (5): 

𝛾𝑛+1,𝑘 = 𝛾𝑛,𝑘−1 − 𝛾𝑛,𝑘+1. (6) 

For example, 𝛾1,{−1,0,1} = {−1,0,1} and 𝛾2,{−2,…,2} = {1, 0, −2, 0, 1}. Being closely 

related to Pascal’s triangle, Eq. (6) is solved as follows: 

𝛾𝑛,𝑘 = {
(−1)(𝑛+𝑠) (

𝑛

𝑠
) 𝑛 + 𝑘 = 2𝑠

0 𝑛 + 𝑘 = 2𝑠 + 1
, 𝑠 ∈ ℤ. (7) 

We now extend this to 𝐷 dimensions and solve the first numerator term of Eq. (1): 

∫ 𝑓(𝑋⃑ + 𝑋′⃑⃑⃑⃑⃑)ℎ𝐷
(𝑛)

(𝑋′⃑⃑⃑⃑⃑)d𝑋′⃑⃑⃑⃑⃑
Ω𝑏

=
1

(2𝑎)𝑛𝐷
∑ (∏ 𝛾

𝑛,𝑘𝑗

𝐷

𝑗=1

) 𝐹𝑛,𝐷(𝑋⃑ + 𝑎𝑘⃑⃑)

𝑛

𝑘1,…,𝑘𝐷=−𝑛

, (8) 

where 𝐹𝑛,𝑗(𝑋⃑) ∶= ∫ 𝐹𝑛−1,𝑗(𝑋1, … , 𝑋𝑗
′, … , 𝑋𝐷)d𝑋𝑗

′𝑋𝑗

−∞
, with 𝐹0,𝑗 ≔ 𝐹𝑛,𝑗−1  for 𝑗 > 1, and 

𝐹0,1 ∶= 𝑓. The remainder of the numerator of Eq. (1) can be computed similarly to Eq. 

(8) (with 𝑛 = 1):  

− ℎ𝐷
(𝑛)̅̅ ̅̅ ̅

∫ 𝑓(𝑋⃑ + 𝑋′⃑⃑⃑⃑⃑)d𝑋′⃑⃑⃑⃑⃑
Ω𝑏

= −
1

(2𝑏)𝐷
∑ (∏ 𝛾1,𝑘𝑗

𝐷

𝑗=1

) 𝐹1,𝐷(𝑋⃑ + 𝑏𝑘⃑⃑)

1

𝑘1,…,𝑘𝐷=−1

. (9) 

Next, we rewrite the first factor of the denominator of Eq. (1) using the popular 

expansion of the variance as ∫ (𝑓(𝑋⃑ + 𝑋′⃑⃑⃑⃑⃑) −   𝑓(̅𝑋⃑))
2

d𝑋′⃑⃑⃑⃑⃑
Ω𝑏

= (2𝑏)𝐷 (𝑓2̅̅ ̅(𝑋⃑) −

𝑓(̅𝑋⃑)
2

), where both 𝑓2̅̅ ̅(𝑋⃑) and 𝑓(̅𝑋⃑) are calculated similarly to Eq. (8) as follows:  

𝑓(̅𝑋⃑) =
1

(2𝑏)𝐷
∑ (∏ 𝛾1,𝑘𝑗

𝐷

𝑗=1

) 𝐹1,𝐷(𝑋⃑ + 𝑏𝑘⃑⃑)

1

𝑘1,…,𝑘𝐷=−1

, 

𝑓2̅̅ ̅(𝑋⃑) =
1

(2𝑏)𝐷
∑ (∏ 𝛾1,𝑘𝑗

𝐷

𝑗=1

) 𝐺1,𝐷(𝑋⃑ + 𝑏𝑘⃑⃑)

1

𝑘1,…,𝑘𝐷=−1

, 

(10) 

where 𝐺𝑛,𝑗 is defined similarly to 𝐹𝑛,𝑗, except that 𝐺0,1 = 𝑓2. Lastly, we calculate the 

second factor in the denominator of Eq. (1): 



∫ (ℎ𝐷
(𝑛)

(𝑋′⃑⃑⃑⃑⃑) −  ℎ𝐷
(𝑛)̅̅ ̅̅ ̅

)
2

d𝑋′⃑⃑⃑⃑⃑
Ω𝑏

= (2𝑏)𝐷 (ℎ𝐷
(𝑛)2̅̅ ̅̅ ̅̅ ̅

− ℎ𝐷
(𝑛)̅̅ ̅̅ ̅2

). (11) 

The Fourier transform of the box function is ℱ{ℎ𝐷} = ∏ sinc(𝑎𝜔𝑗)𝐷
𝑗=1 , which leads 

to the Fourier transform of the kernel ℱ{ℎ𝐷
(𝑛)

} = ℱ{ℎ𝐷}𝑛 = ∏ sinc𝑛(𝑎𝜔𝑗)𝐷
𝑗=1  via the 

convolution theorem. The integral of the template is ∫ ℎ𝐷
(𝑛)

(𝑋′⃑⃑⃑⃑⃑)d𝑋′⃑⃑⃑⃑⃑
Ω𝑏

=

∫ ℎ𝐷
(𝑛)

(𝑋′⃑⃑⃑⃑⃑)d𝑋′⃑⃑⃑⃑⃑
ℝ𝐷 = ℱ{ℎ𝐷

(𝑛)
}|

𝜔⃑⃑⃑⃑=0
= 1, from which the template mean is computed as 

ℎ𝐷
(𝑛)̅̅ ̅̅ ̅

= 1 (2𝑏)𝐷⁄ . As for the mean of the square of the template, we use Parseval’s the-

orem as follows: 

∫ ℎ𝐷
(𝑛)2

(𝑋′⃑⃑⃑⃑⃑)d𝑋′⃑⃑⃑⃑⃑
Ω𝑏

= ∫ ℎ𝐷
(𝑛)2

(𝑋′⃑⃑⃑⃑⃑)d𝑋′⃑⃑⃑⃑⃑
ℝ𝐷

=
1

(2𝜋)𝐷
∫ ℱ{ℎ𝐷

(𝑛)
}

2
(𝜔⃑⃑⃑)d𝜔⃑⃑⃑

ℝ𝐷

= ∏
1

2𝜋
∫ sinc2𝑛(𝑎𝜔𝑗) d𝜔𝑗

∞

−∞

𝐷

𝑗=1

= (
1

2𝜋𝑎
∫ sinc2𝑛 𝜔 d𝜔

∞

−∞

)

𝐷

. 

(12) 

We now define and compute [9]: 

𝛽𝑛 ≔
1

2𝜋
∫ sinc2𝑛 𝜔 d𝜔

∞

−∞

= 𝑛 ∑
(−1)𝑖(𝑛 − 𝑖)2𝑛−1

𝑖! (2𝑛 − 𝑖)!

𝑛−1

𝑖=0

. (13) 

Therefore, ℎ𝐷
(𝑛)2̅̅ ̅̅ ̅̅ ̅

= (
𝛽𝑛

2𝑎𝑏
)

𝐷

, and substituting in Eq. (11) leads to:  

∫ (ℎ𝐷
(𝑛)

(𝑋′⃑⃑⃑⃑⃑) − ℎ𝐷
(𝑛)̅̅ ̅̅ ̅

)
2

d𝑋′⃑⃑⃑⃑⃑
Ω𝑏

= (
𝛽𝑛

𝑎
)

𝐷

−
1

(2𝑏)𝐷
. (14) 

Substituting all of the above in Eq. (1) and simplifying results in the following for-

mula for the proposed fast approach of computing NCCC: 

NCCC(𝑋⃑) =  

(
2𝑏

(2𝑎)𝑛)
𝐷

∑ (∏ 𝛾𝑛,𝑘𝑗

𝐷
𝑗=1 ) 𝐹𝑛,𝐷(𝑋⃑ + 𝑎𝑘⃑⃑)𝑛

𝑘⃑⃑=−𝑛
− ∑ (∏ 𝛾1,𝑘𝑗

𝐷
𝑗=1 ) 𝐹1,𝐷(𝑋⃑ + 𝑏𝑘⃑⃑)1

𝑘⃑⃑=−1

√(2𝑏)𝐷 ∑ (∏ 𝛾1,𝑘𝑗

𝐷
𝑗=1 ) 𝐺1,𝐷(𝑋⃑ + 𝑏𝑘⃑⃑)1

𝑘⃑⃑=−1
− (∑ (∏ 𝛾1,𝑘𝑗

𝐷
𝑗=1 ) 𝐹1,𝐷(𝑋⃑ + 𝑏𝑘⃑⃑)1

𝑘⃑⃑=−1
)

2
√(

2𝛽𝑛𝑏
𝑎

)
𝐷

− 1

, 
(15) 

where ∑ (∙)𝑛

𝑘⃑⃑⃑=−𝑛
 is short for ∑ (∙)𝑛

𝑘1,…,𝑘𝐷=−𝑛 . NCCC values range from −1 to 1. 

Note that 𝐹𝑛,𝐷, 𝐹1,𝐷, and 𝐺1,𝐷 are independent of 𝑎 and can be pre-computed, along 

with the second term in the numerator and the first factor in the denominator of Eq. (15). 

Furthermore, the second factor in the denominator is a scalar that is computed fast in 

𝑂(1) for each 𝑎. Thus, in the proposed approach to estimate NCCC with the Gaussian 

template, the bulk of the computational cost is only due to the first term in the numerator 

of Eq. (15), which can be computed in 𝑂(𝑁) for each 𝑎, with 𝑁 the number of voxels in 

the image. On the contrary, the computational complexity of FFT is 𝑂(𝑁 log 𝑁) [10], 



making the overall computational cost of lesion detection noticeably higher for the FFT-

based algorithm (template had to be zero-padded to the size of the image) than the pro-

posed approach. This difference in computational cost is particularly amplified given 

that the NCCC needs to be repeatedly computed for many values of 𝑎. 

3 Experimental Results 

We evaluated the proposed template matching approach by comparing its performance 

with that of the conventional FFT-based approach. We used both artificial volumes, 

and real brain T2-weighted Fluid Attenuation Inversion Recovery (FLAIR) MRI vol-

umes containing MS lesions. To avoid boundary artifacts, the images were zero-padded 

with 𝑏 elements on the positive side of each dimension. In each experiment, the NCCC 

was computed for 𝑎 = 1, … , 𝑎max. Both algorithms were implemented in MATLAB. 

3.1 Experiments on Synthetic Data 

We first evaluated the performance of the proposed approach on synthetic data. Twenty 

artificial volumes of the size 512×512×512 voxels were created, each of which con-

tained an enhancing sphere with random radius (from 8 to 21 pixels) and random loca-

tion in the volume. We used both our algorithm (𝑛 = 2, 𝑏 = 50, 𝑎max = 24) and the 

FFT-based approach (similar parameters, using the exact Gaussian kernel) to detect the 

sphere from the volume. We computed the NCCC for 24 values for the radius and found 

its maximum with respect to the location and the radius. Both methods accurately re-

covered the locations of all of the spheres i.e. the centers of the detected spheres are 

identical to the original ones for all 20 volumes. Since the standard deviation of the 

Gaussian is proportional, but not necessarily equal to the size of the sphere that it de-

tects, we conducted a regression analysis on the liner relationship between the original 

radius and the detected radius. Their ratio was 1.61 ± 0.05 and 1.74 ± 0.06 for the pro-

posed and the FFT methods, respectively, both values significant (p = 9×10-18). 

We performed a different experiment on volumes with varying dimensions to com-

pare the computational costs of the proposed and the FFT-based algorithms for NCCC 

computation.1 We made 20 volumes with linearly increasing number of voxels, from 

106 (100×100×100) to 1.25×108 (500×500×500), with each volume containing a bright 

                                                           
1 We ran the experiments on a Linux computing cluster. Although we used MATLAB with the 

singleCompThread option, it still multithreaded the codes on multiple cores. Therefore, here 

for each experiment we report the total time spent by the cores (CPU time), as opposed to the 

real-world time elapsed between the start and end times of the code (wall time). 



sphere of radius 17 pixels at the center. For each volume, each algorithm was run 10 

times on a Xeon 5472 3.0GHz processor (𝑛 = 2, 𝑏 = 50, 𝑎max = 24). The mean and 

the standard deviation of the runtimes are shown in Figure 1. Our method (red curve) 

was 2.4 ± 0.4 times faster than the conventional FFT-based method (blue curve), while 

using 38% ± 4% less resident memory. The irregularity in the FFT runtime is partly 

because it is fastest when each dimension is a power of two (e.g., the valley at 9.9×107). 

3.2 Lesion Detection Experiments on Real MR Volumes 

Next, we tested the two algorithms on a T2-FLAIR 1mm³ isotropic-voxel human brain 

MR volume that contained MS lesions. We used 𝑛 = 2, 𝑏 = 7, and 𝑎max = 3 due to 

the small size of the lesions (according to Sec. 3.1, 𝑎 = 3 corresponds to a radius of 5). 

For each voxel, we computed the maximum value of NCCC across all 𝑎. Then, to locate 

the top 10 most probable lesion areas on this 𝑎-maximized volume, we found the voxel 

with the maximum value, masked a sphere around it (with a radius twice the optimal 

𝑎), then repeated this process to find the next maxima. The true positive (red circle) and 

false positive (blue circle) lesions from top 10 detected areas are shown in their respec-

tive slices in Figure 2 for the proposed (two top rows) and the FFT-based (two bottom 

rows) approaches. The green circles are the intersection of the slice with the spheres 

that represent detected lesions centered in other slices. Essentially, these results show 

the ability of proposed algorithm in efficient detection of non-rounded lesions, which 

is utterly useful for the clinicians. Both methods equally identified six true lesions and 

four false lesions. Among the true positives, five were commonly identified by both 

algorithms. The results suggest that the accuracies of the two methods are similar for 

brain lesion detection from MRI. In this experiment, we detected the lesions from the 

entire brain; however, if desired, one can restrict the detection to the white matter (or 

any other region of interest) using a mask. 

 
Figure 1.  Runtime analysis of proposed (red) and FFT-based (blue) approaches. 



4 Conclusions 

In this work, we have presented a fast NCCC-based template-matching framework, 

with an approximated multi-dimensional Gaussian kernel. The proposed algorithm sig-

nificantly reduces the computational complexity of automatic detection of brain lesions 

compared to the FFT-based approach, virtually without compromising the accuracy. As 

part of the future work, we will extend the proposed framework to use more flexible 

templates, especially those suitable for the detection of ring enhancing lesions contain-

ing non-enhancing region in the center from MRI with contrast agents. 
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