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ABSTRACT 

The choice of a reference image typically influences the results of deformable image registration, thereby 
making it asymmetric. This is a consequence of a spatially non-uniform weighting in the cost function 
integral that leads to general registration inaccuracy. The inhomogeneous integral measure – which is the 
local volume change in the transformation, thus varying through the course of the registration – causes 
image regions to contribute differently to the objective function. More importantly, the optimization 
algorithm is allowed to minimize the cost function by manipulating the volume change, instead of aligning 
the images. The approaches that restore symmetry to deformable registration successfully achieve inverse-
consistency, but do not eliminate the regional bias that is the source of the error. In this work, we address 
the root of the problem: the non-uniformity of the cost function integral. We introduce a new quasi-volume-
preserving constraint that allows for volume change only in areas with well-matching image intensities, and 
show that such a constraint puts a bound on the error arising from spatial non-uniformity. We demonstrate 
the advantages of adding the proposed constraint to standard (asymmetric and symmetrized) demons and 
diffeomorphic demons algorithms through experiments on synthetic images, and real X-ray and 2D/3D 
brain MRI data. Specifically, the results show that our approach leads to image alignment with more 
accurate matching of manually defined neuroanatomical structures, better tradeoff between image intensity 
matching and registration-induced distortion, improved native symmetry, and lower susceptibility to local 
optima. In summary, the inclusion of this space- and time-varying constraint leads to better image 
registration along every dimension that we have measured it. 

  

Keywords: Deformable image registration, volume-preserving constraints, symmetry, inverse-
consistency, integral non-uniformity. 
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1. Introduction 

Image registration is a crucial step in numerous clinical and neuroscientific imaging studies involving the 
comparison of images, such as population investigations and longitudinal analyses. In the basic case with 
only two images involved, pairwise registration provides dense point-wise correspondences between voxels 
of the two input images. The set of such correspondences is often thought of as a transformation that takes 
each point in one image to the corresponding point in the other image. In that case, registration is said to 
align the two images; i.e., morph and overlay a moving image on a fixed image (or alternatively move both 
images) so that they appear similar or identical to each other. Interpreting registration as alignment requires 
the definition of a reference space, in which the images are aligned and compared. The choice of the 
reference influences the results, particularly when the transformation is assumed non-rigid (beyond merely 
translation and rotation) – as is necessary in most cross-subject registration applications. It is common to 
arbitrarily select the native space of one of the images (the space where the image is undistorted) as the 
reference space, hence the dependence of the results on the choice of the so-called reference image1. It must 
be noted that interpreting registration as alignment – and consequently selection of a reference image/space 
– is intrinsically unnecessary for many applications (e.g., comparison of local cortical thickness of two 
brain images, where correspondences established between the two images do not necessarily represent 
alignment). With no image designated as the reference, swapping the two images should not affect the 
resulting point-wise correspondences, making pairwise registration inherently symmetric with respect to 
the input images. Obtaining the same results after reversing the direction of registration – known as inverse-

consistency2 – is therefore necessary for a pairwise registration method to be considered reliable and 
unbiased.3 

Pairwise deformable registration is performed by maximizing some measure of similarity between the 
corresponding regions of the two images (for a survey, see (Sotiras et al., 2013)). Since a perfect match 
cannot generally be achieved due to noise and anatomical variability, typically a local image mismatch 

measure aggregated over the entire space is minimized. Such cost functions (CFs), with the most common 
example being the sum of squared difference (SSD) of image intensities, require the images to be aligned 
in a reference space in which the mismatch measure is integrated, thus raising the question of how to select 
a suitable reference space. Registration results depend on the choice of the reference as a consequence of 
the non-rigid (specifically, volume-changing) nature of the transformation, since, as we will see in 
Section 2.3, spatially uniform integration in the reference space is generally equivalent to non-uniform 
integration in (one or both) native spaces. In other words, for an arbitrary deformation, the integral of the 
mismatch measure has space-varying weightings in at least one of the native spaces of the images, with a 
weighting that varies depending on the deformation and the choice of the reference space. As we will see, 
the weighting in the CF integral is the Jacobian determinant of the transformation, which represents the 
local volume change in the deformation field. Assigning weighting to image regions introduces a regional 
bias. Furthermore, given that the weighting depends on the transformation, the optimization algorithm will 

                                                           
1 Since the reference image is not interpolated during registration, we call the other image the interpolated image. 
2 The terms “symmetry” and “inverse-consistency” have been used interchangeably in most of the literature. 
3 We do not denote the images as “source” and “target”, and therefore register Image A and Image B, rather than 

Image A to Image B. However, we do not consider atlas-to-subject mapping as “pairwise registration” here, since 

such a registration is intrinsically asymmetric (Sabuncu et al, 2009). By pairwise registration, we mean that the input 

images are real and in physically existent spaces, such as registering brain images of two subjects, or of one subject 

at different time points. 
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drive the deformation also towards ‘lowering the weighting of the mismatched areas’, instead of only 
improving the alignment (e.g. by shrinking a region of one image so much as to make it almost vanish). 
Figure 1 presents an example of such a phenomenon, which results in a counterproductive increase in SSD 
in the native space of the interpolated image during registration. The dependence of the degree of expansion 
and shrinkage – representing the Jacobian determinant – on the choice of the reference image has also been 
observed by Cachier and Rey (2000), and has been reported to bias the quantification of the evolution of 
lesions in multiple sclerosis studies by hampering the equal retrieval of expanding and shrinking areas (Rey 
et al., 2002). These sources of error exist regardless of whether the reference space is chosen to be the native 
space of an input image or some sort of mid-space, as one or both of the native spaces of the images – which 
are the only physically meaningful spaces – will be integrated with regional bias.  

Figure 1.  In this illustrative example, two one-dimensional images are registered by a given SSD-

minimizing algorithm, with the blue image (the M-shaped intensity profile) chosen as the reference and 

the green one chosen as the interpolated (moving) image. The evolution of the registration is depicted 

from left to right, where the two rows visualize the process in the native spaces of the blue (top row) and 

the green (bottom row) images. Therefore, the deformations of the green (top row) and blue (bottom row) 

images are the inverse of each other. Given that the blue image matches better the background rather than 

the bright spot of the green image, the latter is shrunk in the reference space (top row). It can be seen that 

the SSD, while decreasing in the native space of the reference image (top row, where the CF integral is 

uniform), increases in the native space of the interpolated image (bottom row, where the CF integral is 

weighted by the volume change). The CF, being a non-uniform integral in the native space of the 

interpolated image, is here minimized by decreasing the weighting, even though resulting in an increase 

in the mismatch measure. (This toy example is provided to illustrate the disagreement on the 

decrease/increase in the SSD when the transformation is observed in the two native spaces, without 

commenting on whether the SSD-minimizing transformation here is the “expected” result. The two red 

curves in Figure 4 are another such example, yet using a symmetrization approach. For simplicity, we 

assume the regularization to be small relative to the data-attachment term.) 
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In standard implementation of deformable registration the reference space is commonly chosen as the native 
space of one of the images (say, the first image), and the results are consequently influenced by the ordering 
of the input images, thereby breaking the symmetry of registration. The spurious dependence of the point-
wise correspondences on the choice of the reference image has been shown to be related to a bias introduced 
into the estimation of Alzheimer’s disease effects (Fox et al., 2011; Hua et al., 2011; Thompson and 
Holland, 2011; Yushkevich et al., 2010). In longitudinal studies in particular, favoring one time point over 
another may result in errors dominating the subtle changes one seeks to measure (Reuter et al., 2012). In 
addition, in radiation therapy, the implication of registration asymmetry has been discussed for daily dose 
computation (Yang et al., 2008) and auto re-contouring (Ye and Chen, 2009). To address this issue, existing 
approaches primarily aim to restore inverse-consistency to registration by computing the integral in both 
image spaces and taking the average (Alvarez et al., 2007; Bondar et al., 2010; Cachier and Rey, 2000; 
Christensen and Johnson, 2001; Chui, 2001; Feng et al., 2009; Geng, 2007; Gholipour et al., 2010; Leow 
et al., 2007; Modat et al., 2012; Mohagheghian et al., 2010; Sabuncu et al., 2009; Tagare et al., 2009; Tao 
et al., 2009; Trouvé and Younes, 2000; Vercauteren et al., 2008b; Zeng and Chen, 2008; Zhang et al., 2006) 
or computing the integral in an abstract mid-space chosen to be “in between” the native spaces of the images 
(Beg and Khan, 2007; Chen and Ye, 2010; Joshi et al., 2004; Lorenzen et al., 2004; Lorenzi et al., 2013; 
Noblet et al., 2008; Škrinjar et al., 2008; Yang et al., 2008; Ye and Chen, 2009). Other approaches based 
on similar ideas have been proposed in the literature, including (Ashburner et al., 1999, 2000; Avants et al., 
2008; Basri et al., 1998; Christensen and Johnson, 2003; Dedeoglu and Kanade, 2005; He and Christensen, 
2003; Rogelj and Kovačič, 2006; Yanovsky et al., 2008b; Yeung et al., 2008). Although these methods are 
effective in making the registration invariant to the ordering of the input images, they do not alleviate the 
time-varying regional bias, which is the source of the problem. Indeed, inverse-inconsistency is merely a 
symptom of non-uniform integration of the mismatch measure on the images, and symmetrization of 
registration does not necessarily eliminate the underlying cause (non-uniformity of the integral) and the 
consequent inaccuracies introduced into the registration. Our underlying hypothesis is that the freedom for 
the algorithm to minimize the CF by altering the Jacobian determinant instead of improving image matching 
leads to suboptimal registration solutions in terms of 1) reduced image intensity matching, 2) increased 
(and unnecessary) distortion in the warp field, and 3) the creation of local minima that reduce the accuracy 
of the resulting correspondences. 

In this work, instead of symmetrizing the CF, we address the root of the problem: non-uniform integrals of 
CFs defined on the native spaces of images. We propose to restrict the deformation such that the integrals 
in the native spaces of the images are (almost) unweighted, except in regions where weighting contributes 
(almost) no error to the CF. Our adaptive constraint – which, as we will see in Section 3.1, is quasi-volume-
preserving (QVP) – keeps the deformation field away from zones that would lead to non-uniformity-
induced error, by limiting the local volume changes except for regions where image intensities match well. 
As a result, the proposed method yields overall improvement in the alignment (Section 4) when 
incorporated in an SSD-like deformable registration algorithm.4 Furthermore, a natural consequence of the 
QVP constraint is that the values of the native CFs, i.e. those with uniform integral on the native space of 
an input image, remain arbitrarily close to each other throughout the registration. This property, which we 
shall name native symmetry, is a stronger form of symmetry and is improved by our method. Native 
symmetry implies that both native CFs agree on the progress of registration, as opposed to only one of them 

                                                           
4 Information theoretical objective functions also suffer from the problems described here. However, addressing them 

is beyond the scope of this paper. 
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(as in asymmetric registration, e.g. Figure 1) or only the average of them (as in symmetrization). An 
additional advantage of restricting the deformation in dissimilar regions is helping to avoid entrapment of 
the iterative algorithm in local minima due to too much flexibility, thereby guiding it towards a good overall 
QVP fit before relaxing the constraints and achieving an optimum warp. This is particularly important in 
registration of medical images with possibly large anatomical variation. We will show improvement in 
registration in terms of better label alignment, better tradeoff between intensity matching and geometric 
distortion, native symmetry, and lower susceptibility to local optima, using two-dimensional (2D) non-
diffeomorphic and three-dimensional (3D) diffeomorphic registration on several datasets. 

This article extends our previous conference version (Aganj et al., 2013a). In particular, we provide a 
thorough theoretical justification (Section 2), more detailed description of the method (Section 3), more 
comprehensive experimental validation (Section 4), and further implementation details (appendices). 

2. Spatial non-uniformity problem description 

2.1. Definitions 

The data attachment term of the standard asymmetric cost function (CF) that is minimized in deformable 
registration is defined as: 

 ����, �, �� ≔ ��	��
�, � ∘ ��
��d

�

, (1) 

where Ω ⊆ ℝ� is the �-dimensional image space, �, �: Ω ↦ ℝ are two input images, �: Ω ↦ Ω is the 
invertible transformation with respect to which the CF is minimized, and �: ℝ� ↦ ℝ�� is the (often 
symmetric) nonnegative intensity distance (mismatch measure); e.g., defining ��
, �� ≔ �
 − ��� results 
in the SSD CF.5 Some global regularization is also typically either added explicitly to this data-attachment 
CF, or performed at each iteration (see Appendix B). By searching for the transformation � that minimizes 
the CF, the optimization algorithm is expected to align corresponding regions of the two images. 

Since image � is not deformed by � in the integral of Eq. (1), we say that the integral is represented in the 
native space of �. Image �, on the other hand, appears as � ∘ � in Eq. (1) and is generally deformed; 
however, by a simple change of variable � ≔ ��
�,  the same integral can be represented in the native 
space of � (see Eq. (3) below). We call �� the �-native CF, since the integral of � is unweighted (taken 

uniformly) when represented in the native space of �. 

2.2. Pitfalls of non-uniformity 

We explain here the pitfalls of having a non-uniform (weighted) CF, which will help later to describe the 
key problem addressed in this paper. Let us assume that instead of Eq. (1), the following weighted version 
of it were minimized, 

 
min
�

��	��
�, � ∘ ��
�����
�d

�

, (2) 

                                                           
5 This is the particular form of the CFs aggregating a local mismatch measure, the most common of which being the 

SSD. Several other CFs, such as normalized mutual information, correlation coefficient, local correlation, etc., cannot 

be expressed with Eq. (1). 
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where ��: Ω ↦ ℝ�� is an arbitrary nonnegative weight function that generally depends on �. Allowing the 
image regions to contribute differently to the CF would introduce a multiplicative regional bias that would 
change throughout the registration process, depending on the input images and the registration parameters. 
More troublesome, however, would be the dependence of the bias on the transformation, thereby giving the 
optimization algorithm the ability to control the weighting in a counterproductive manner. More precisely, 
the algorithm would minimize such a weighted CF by: 

1) searching for � that makes the transformed image better match the reference, ��
� ≈ � ∘ ��
�, in 
a larger subset of Ω, and/or 

2) manipulating � so as to lower the weighting ���
�, particularly in regions where the image 
intensities do not match well (i.e., with larger �). 

The first point in this list is the raison d’être of CF optimization, and what the registration algorithm is 
supposed to do. The second, however, creates a mathematical loophole in the optimization, allowing the 
algorithm to not only evade its main task (i.e., decreasing �), but possibly lead the deformation towards 
even worse alignment (by changing � in a local fashion such that � increases, but both �� and the product � ⋅ �� decrease). It is important to avoid regionally biasing the CF integral (unless intentionally done for 
a particular benefit) to prevent such negative consequences and make the algorithm focus solely on 
improving the alignment. Next, we show that standard deformable registration algorithms have CFs that 
are non-uniform (weighted) in at least one of the two native spaces, thus suffering the disadvantages 
described here. 

2.3. Intrinsic non-uniformity in standard deformable image registration 

As discussed in Section 2.2, the mismatch measure � should be integrated uniformly in order to avoid 
registration inaccuracy. However, there are two native spaces – that of � and that of � – which are equally 
physically meaningful. The �-native CF (Eq. (1)) satisfies uniformity in the native space of �; yet, rewriting 
it in the native space of � via the change of variable � ≔ ��
� leads to the following non-uniform integral: 

 ����, �, �� = ��	� ∘ ��	���, ����� � ∘ ��	���⁄ d�
�

, (3) 

where the function �: Ω ↦ ℝ
� is the Jacobian determinant of the transformation, ��
� ≔ det ���
�, which 
we assume to be positive (i.e., � preserves the topology). Given that � represents the relative volume change 
caused by the transformation and is in general inhomogeneous, we can see that the �-native CF is weighted 
by 1 �⁄  and does not satisfy uniformity in our second native space, i.e. that of �. The uniform CF in the 
native space of �, or the �-native CF, has the following form: 

 ����, �, �� ≔ ��	� ∘ ��	���, �����d�
�

. (4) 

The change of variable � = ��
� again reveals that the �-native CF does not have a uniform representation 
in the native space of �: 

 ����, �, �� = ��	��
�, � ∘ ��
����
�d

�

. (5) 
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It can be seen that, regardless of which native space is picked as the reference space, the undesirable 
weighting of the integral shows up in at least one of the native spaces (Figure 2a-c), except for the especially 
restrictive cases where ��
� = 1 is imposed, such as in rigid registration, or more generally volume-
preserving registration (Elen et al., 2008; Haber and Modersitzki, 2007; Hirota et al., 2000; Li et al., 2009; 
Loeckx et al., 2005; Mansi et al., 2011; Park et al., 2011; Rohlfing et al., 2003; Saddi et al., 2007; Tanner 
et al., 2002; Yin et al., 2009). Volume-preserving approaches, however, make the assumption that the 
deformation causes no local shrinkage or expansion, which may generally not be the case. 

The lack of simultaneous uniformity of the CFs in both native spaces, as mathematically revealed above, is 
an inherent imperfection of standard deformable registration. Specifically, since the weighting ��
� is the 
local volume change, the algorithm may attempt to enforce artificial expansion or shrinkage – depending 
on which image is chosen as the reference – to decrease the weighted CF without accurate alignment (see 
Section 2.2). It is important to stress that this is not an esoteric argument that rarely occurs in practice; 
instead, it is inevitable in any nonlinear registration in any region in which there is an initial mismatch (see 
Figure 1 for an example). In these regions a biased CF integral will lead the algorithm to attempt to reduce ��
� (along with �) as much as possible within the limits of the imposed regularization. In fact, standard 
registration has been shown to privilege either expanding or shrinking regions depending on the choice of 
the reference (Cachier and Rey, 2000; Rey et al., 2002). The added global regularization restricts this 
artificial volume change, but only to some extent; therefore we need to further prevent this weight factor 
from interfering in the data-attachment term’s driving of the registration towards the desired optimal 
alignment. 

(a) (b) (c) (d) 

 

Figure 2.  a) Two images � (top) and � (bottom) are given as input to the registration algorithm. The 

deformed images in an intermediate registration iteration are illustrated in: b) native space of �, c) native 

space of �, and d) a mid-space. The grid distortion in (b,c,d) demonstrates that no matter what space is 

chosen to compute the CF integral, at least one of the images is integrated non-uniformly. 
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An implication of the non-uniform weighting in exactly one of the native spaces is that in general �� ≠ ��. 

Also, since: 

 ����, �, �� = ����, �, ��	�, (6) 

one can see that the native CFs are inverse-inconsistent, i.e. ����, �, �� ≠ ����, �, ��	�, and ����, �, �� ≠����, �, ��	�. The primary approach in the literature to address this inverse-inconsistency is the 

minimization of the following average CF (Cachier and Rey, 2000; Christensen and Johnson, 2001; Tagare 
et al., 2009; Trouvé and Younes, 2000)6: 

 ��
� ≔
����, �, �� + ����, �, ��

2
. (7) 

Substituting for �� from Eq. (6), one can see that ��
� is a symmetrized version of either of the native CFs 

and is therefore inverse-consistent, i.e. ��
���, �, �� = ��
���, �, ��	�. However, by rewriting it in the 
native spaces of the two images, once using Eqs. (1,5) and again using Eqs. (3,4), 

 ��
���, �, �� = � �	��
�, � ∘ ��
�� 1 + ��
�
2

d

�

 

= � �	� ∘ ��	���, ����� 1 + 1 � ∘ ��	���⁄
2

d�
�

, 
(8) 

it turns out that ��
� is a weighted integral in both native spaces (Figure 2d), and so the registration still 
incurs the regional bias errors (Section 2.2), in spite of its inverse-consistency. 

In an alternative approach to restore symmetry, the mismatch error is integrated uniformly in an abstract 
mid-space, chosen to be equally close to both native spaces (Avants et al., 2008; Beg and Khan, 2007; 
Lorenzen et al., 2004; Noblet et al., 2008). Provided that the mid-space is chosen “in between” the two 
native spaces, changing the ordering of the input images will not affect the CF, hence the inverse-
consistency. Nevertheless, it can be easily shown similarly as above that rewriting such a mid-space CF in 
the native spaces of the images, once again, results in the Jacobian determinant of the transformation (that 
takes the mid-space to the native space) to appear as a weighting in the native-space representations of the 
CF. Therefore, the integral of such a mid-space CF is non-uniform in both of the physically meaningful 
native spaces, and only uniform in the virtual mid-space, which is physically nonexistent and possibly 
changing during the registration process. As a consequence, the problems associated with the regional bias 
(Section 2.2) remain unresolved in these approaches. For instance, since the mid-space and the weighting 
often depend on �, the optimization algorithm has the ability to alter the mid-space so as to decrease the 
CF without necessarily making the two images more similar. An example of this behavior is when the 
algorithm changes � in such a way that regions with mismatching image intensities are shrunk in the mid-
space. This results in a decrease in the (mid-space) CF but not necessarily in the native CFs, since the 
images will look more similar in the mid-space but not necessarily similar in the two native spaces. 
Constraints that are used to keep the mid-space “in between” the native spaces of the two images usually 

                                                           
6 More references are provided in Section 1. 
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prevent such regions from totally shrinking, but depending on the strength of these constraints, partial 
shrinkage may still happen. 

It should be noted that minimizing ��
� or a mid-space CF results in transformations that are not necessarily 
minimizers of the native CFs, and for which, �� and �� are not necessarily equal. Here, we define the native 

symmetry property of an image registration algorithm, as the quality of producing transformations 
minimizing the native CFs, while keeping them equal (�� = ��). Rigid, and more generally any volume-

preserving registration is natively symmetric (disregarding the asymmetry due to resampling artifacts 
(Aganj et al., 2013b; Reuter et al., 2010; Sabuncu et al., 2009)), since with ��
� = 1 everywhere, the two 
native CFs (Eqs. (1,5)) are always equal. Native symmetry is a stronger form of symmetry, indicating that 
both native CFs agree with the progress of registration. Neither asymmetric (minimizing either �� or ��) nor 

symmetrized (minimizing ��
� or a mid-space CF) deformable registration is guaranteed to be natively 
symmetric. 

3. Proposed methods 

3.1. Quasi-volume-preserving constraint 

In this work we introduce a constraint on the deformation field that keeps the non-uniformity error in the 
CF arbitrarily small. Examining Eqs. (3,5,8), we can see that the condition ��
� = 1, ∀
 ∈ Ω would be 
sufficient for ��, ��, and ��
� to be free of non-uniformity error. Nevertheless, such a restrictive volume-

preserving constraint is not a necessary condition, as � can indeed be different from 1 where the mismatch 
measure � is zero, and no error will yet arise from non-uniformity. Accordingly, by equating the integrand 

to its unweighted version, i.e. �	��
�, � ∘ ��
����
� = �	��
�, � ∘ ��
��, the following less restrictive 

constraint (here written in the native space of �) can also be seen to guarantee the elimination of the non-
uniformity error: 

 �	��
�, � ∘ ��
�����
� − 1� = 0 , ∀
 ∈ Ω. (9) 

Nonetheless, in practice, exact intensity matching, �	��
�, � ∘ ��
�� = 0, and absolute volume 

preservation, ��
� = 1, are seldom achieved. Thus, to allow for large deformations, particularly in the 
presence of noise and poor intensity match, here we propose the following relaxation of the above 
constraint, which we call the quasi-volume-preserving (QVP) constraint: 

 �	��
�, � ∘ ��
��|��
� − 1| < � , ∀
 ∈ Ω, (10) 

where the constant � is a positive threshold on the local non-uniformity error. In fact, the prefix quasi- 
indicates the fact that volume preservation is imposed only in regions with disagreeing image intensities, 
as well as the relaxation of Eq. (9) to Ineq. (10). Roughly speaking, for a small �, the QVP constraint ensures 
that there is almost no volume change (��
� ≅ 1), except for regions where the image intensities almost 

match (�	��
�, � ∘ ��
�� ≅ 0).7 The performance of enforcing the QVP constraint with different values 

                                                           
7 Although the strict Eq. (9) is symmetric, its relaxation leading to Ineq. (10) introduces a level of asymmetry in the 

optimization space, which grows with ϵ. Symmetrization of (10) would require the additional constraint 

������,� ∘ ����	|������ − 1| < �, ∀� ∈ 
, which, however, is overly restrictive, especially that even in 

diffeomorphic registration diffeomorphism is sometimes violated leading to ���� ≤ 0 for some voxels. Therefore, we 

only enforce Ineq. (10) in our experiments, as it fulfills the task of decreasing the non-uniformity error. 
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of � has been evaluated in 3D brain image registration in Section 4.2. As we shall see, smaller values of �, 
which further restrict the deformation, actually lead to improvements in the overall registration quality, 
indicating that the QVP constraint guides the registration away from problematic regions in the energy 
landscape, yielding better CF optima. A higher value for �, however, might be needed to accommodate 
larger deformations and regions with poorer intensity match and higher noise (e.g., in longitudinal brain 
imaging when a tumor both grows and changes intensity). 

By constraining the deviation of the volume change ��
� from 1 as in the QVP inequality (10), the total 
non-uniformity error in the native CFs will be bounded by �|Ω| (with |Ω| the size of the space), which can 
be made arbitrarily small by choosing a small enough �.8 Remaining in this (almost) error-free QVP zone 
ensures that the optimization algorithm is not misled by a biased CF gradient that can potentially steer it 
away from the global minimum, for example, by encouraging complex warps in regions where no matching 
of image intensities is possible. In addition, by combining Eqs. (1,5,10), the error in native symmetry can 
similarly be seen to be bounded: 

 ��� − ��� = ���	��
�, � ∘ ��
�����
� − 1�d

�

� 
≤ ��	��
�, � ∘ ��
��|��
� − 1|d


�
 

< �|Ω|, 
(11) 

with ��
� being close to both native CFs (using Eqs. (7,11)): 

 ���
� − ��/�� <
�|Ω|

2
. (12) 

The local nature of the QVP constraint also ensures regional native symmetry; i.e., satisfying Ineq. (10) 
keeps native CFs defined in any local Ω� ⊂ Ω within �|Ω�| of each other.9 

By keeping the integrals of the CFs (almost) uniform in the native spaces of both images except for regions 
where non-uniformity barely perturbs the CF, the QVP constraint ensures that CF minimization is uniquely 
aimed at better alignment, and that no regional bias irrelevant to registration can be exploited to minimize 
the CF (Section 2.2). 

3.2. Adaptive regularization interpretation 

Enforcing the QVP constraint restricts ��
� to remain close to 1 in regions where the difference between 
the two images is large, but relaxes this restriction where the image intensities are similar. An additional 
practical advantage of the proposed method is its role as adaptive spatially-variant regularization (Cahill et 
al., 2009; Freiman et al., 2012; Glocker et al., 2009; Loeckx et al., 2004; Ou et al., 2011; Pace et al., 2013; 

                                                           
8 Using the change of variable � = ����, this bound can be seen to exist on the non-uniformity error of both �- and 

�-native CFs. 
9 Note that the closeness of the native CFs (native symmetry) is a nice byproduct, but not the goal of QVP constraining. 

Otherwise, simpler approaches could be used to keep �� and �� close to each other without necessarily achieving the 

goal of QVP, which is limiting the local non-uniformity error. In fact, since the QVP constraint is enforced everywhere 

in the image, it leads to one constraint per voxel after discretization, which may be several orders of magnitude more 

constraints than merely one bound on the native symmetry error. 
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Risholm et al., 2009; Staring et al., 2007; Stefanescu et al., 2004; Suárez et al., 2002; Tang et al., 2010). By 
restricting the deformation in regions where there is not a good match and letting the surrounding area to 
mostly drive the displacement, the QVP constraint allows the deformed image to “pass through” regions of 
poor match with restricted volume change, to potentially find regions where a good registration is possible, 
after which the constraint is naturally relaxed. Intuitively, the algorithm avoids fitting noise in regions where 
a good overall match cannot be found. Examples of such behavior are provided in sections 4.1.1 and 4.1.2. 

The factor � in Ineq. (10) is the major contrast between our proposed approach and the volume-preserving 
methods in the literature (Section 2.3); our algorithm preserves volume only in regions where it finds no 
good match between the images. This means that the transformation may still contain compression and 
expansion in areas where the two images are locally similar, allowing good matching in regions where it is 
feasible. Although the QVP constraint is automatically relaxed in such similar-intensity regions, the 
inclusion of the global regularization still keeps the deformation field regular.10 

3.3. Incorporation of the QVP constraint 

The QVP constraint, which can be seen as a restriction on the feasible region of the optimization search 
space, can be applied to any deformable registration tool that optimizes an aggregate objective function, 
i.e. sum of a local similarity measure (such as SSD). To enforce the QVP inequality (10), at each iteration 
of the main registration algorithm we reduce the non-uniformity error: 

 ��
� ≔ �	��
�, � ∘ ��
��|��
� − 1|, (13) 

until ��
� < � for all 
 ∈ Ω. To that end, ��
� may be directly reduced by iteratively minimizing the 
integral � R���
� − ��d
�  to zero, with R��� ≔ �� + |�|� 2⁄  the ramp function, thereby satisfying ��
� <� for all 
. The dependence of ��
� on both ��
� and its derivative ��
�, however, makes this direct 
minimization complicated.11 Thus, for simplicity and numerical stability, we choose a different approach 
to take ��
� to the QVP space. 

To estimate the derivative of ��
� with respect to ��
� and moving ��
� in its descent direction, we first 

note that ��
� is the product of two factors: the mismatch measure �	��
�, � ∘ ��
�� and the Jacobian 

deviation |��
� − 1|. According to the product rule, d�
�� = �d
 + 
d�, the derivative of ��
� has two 
terms, in each of which only one of the two factors is derived. The first term has the derivative of the 

                                                           
10 Note that the primary motivation for the proposed work, however, is limiting the non-uniformity error and achieving 

more accurate registration. Therefore the QVP constraint is not a deformation model and the adaptive regularization 

is only a secondary motivation. 
11 For instance for the SSD CF, where ���, �� ≔ �� − ���, one can verify the following complex gradient direction 

for ����, which is the variation of � R����� − ��d�
�

 with respect to ����: 

2����� − � ∘ ����	���δ����� − �� + u����� − ��	������∇�� ∘ ���� − ����∇����	 sign����� − 1� −
u����� − ��|���� − 1|�∇�� ∘ ����� − δ����� − ������� − � ∘ ����	����� ∑ ����� ���,:����

	

� , 

where u�⋅� and δ�⋅� are the Heaviside step and the Dirac delta functions, respectively, and the cofactor matrix ���� 
and the Hessian tensor ���� are defined in Appendix A and Appendix B, respectively. 
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mismatch measure �	��
�, � ∘ ��
��, and is a gradient term similar to that of the main optimization 
algorithm, simply leading to additional CF minimization. Since the mismatch measure is already minimized 
by the main optimization algorithm, we do not include this image-aligning term in the QVP constraining 
step,12 and rather focus on the second term of the derivative. 

To reduce the Jacobian deviation factor |��
� − 1| of ��
�, whose derivative appears in the second term of 
the derivative of ��
�, we take advantage of the fact that the descent direction for the following measure of 
regularity (where ��
� is a weighting function), 

 ���
�‖∂��
� − �‖��d

�

, (14) 

is the well-known inhomogeneous diffusion, applied to the displacement field, 

 ���	�
� = ���
� + γ∇ ⋅ ���
�	∇���
� − 1� �!, (15) 

where �, γ, ��
�, and 1�  are the diffusion iteration number, the step size, the space-variant diffusion 
coefficient, and the vector of all 1s, respectively. Therefore, the above diffusion process reduces the 
deviation of the Jacobian �� from the identity matrix (the higher ��
�, the more strongly). We have shown 
in Appendix C that such small updates, while bringing the Jacobian �� closer to identity, also make the 
Jacobian determinant � asymptotically closer to 1. Since we want the diffusion to be much stronger in the 
areas with higher error, we make the diffusion coefficient grow quadratically with ��
� as follows: 

 ��
� ≔ "���
�. (16) 

It is important for ��
� to be a smooth function of ��
�, as its derivative is computed in the diffusion 
process. We perform the inhomogeneous diffusion of Eq. (15) after both the main gradient-descent/Newton 
iteration and the standard demons regularization have been performed. To speed up the diffusion process, 
we apply a number of (10 in our experiments) iterations of diffusion, then update ��
� and ��
� with the 
new ��
�, and if the QVP constraint ��
� < �, ∀
 ∈ Ω is not yet satisfied we repeat with further diffusion.13 
The stopping criterion (satisfaction of QVP) makes this operation idempotent. 

As we adopt the demons deformable registration (Thirion, 1998) in this work, the inhomogeneous blurring 
of the displacement field (primarily in areas with higher ��
�) at each registration iteration can be seen to 
be related to the Gaussian blurring (equivalent to homogeneous diffusion, see Appendix B) in the demons 
method, which blurs the displacement field at each iteration. However, a major contrast here is that the 

(space-variant) blurring depends on the mismatch measure �	��
�, � ∘ ��
�� that includes image data, 

                                                           
12 As we can see in the results (Section 4), although we have no such additional CF minimization, we obtain a lower 

CF value after the same number of gradient descent or Newton iterations (as well as better label matching and lower 

distortion). Devising a more direct strategy to enforce the QVP constraint is a subject of the ongoing research. 
13 A drawback of this implementation is that we do not know beforehand how many blurring iterations are required, 

thus we cannot precisely predict the runtime of the algorithm. The runtime increases as � decreases; however, it also 

depends on the input images and other parameters, such as the optimization and diffusion step sizes. A specific 

parameterization of the deformation field intrinsically satisfying the QVP constraint is a subject for future work. The 

operator introduced here is also not symmetric, as we intend to minimize the non-uniformity error, rather than to 

explicitly enforce symmetry. Note that the QVP constraint can be incorporated in non-rigid registration algorithms in 

various ways, the implementation of which is not the primary focus of this paper. 
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since both (i) the spatial weighting of the diffusion ��
�, and (ii) the important stopping criterion for the 

diffusion, i.e. the QVP inequality (10), depend on �	��
�, � ∘ ��
��. 

We chose " = 70 in our experiments. Furthermore, to keep the diffusion stable, we choose the diffusion 

step size γ to be at most 2����	� (Johnson et al., 2014), and threshold ��
� so it remains below a certain 
value (2 in our experiments). Also to make sure that local noise does not result in an overly restrictive 
constraint, we denoise ��
� by a Gaussian low-pass filter with the standard deviation of 1 voxel, before 
using it in the diffusion step. 

4. Results and discussion 

To show that the proposed QVP constraint can be incorporated into and improve different implementations 
of deformable registration techniques, we validate it on both demons (in Matlab) and diffeomorphic demons 
(in Insight Toolkit (ITK)) registration. In all of the experiments, the image intensity values were initially 
scaled to be between 0 and 1. 

4.1. Demons registration of 2D images 

We first validate our method using 2D (non-diffeomorphic) demons registration by comparing the 
performance of the following three approaches: minimization of ��, minimization of ��
�, and minimization 

of ��
� with the proposed QVP constraint (with the heuristically-determined optimum �). Since with no 
explicit diffeomorphism constraints the topology is not necessarily preserved, for each method and 
experiment, we choose the optimum general demons regularization parameter # (see Appendix B for 
definition) heuristically to achieve the best convergence with no observable topology break. For each 
experiment, we plot �� and �� with respect to the iteration number to assess the registration native symmetry 

by the extent to which these two native CFs agree with each other. We evaluate this throughout all the 
iterations, as opposed to only at the convergence, since this error is an aggregate measure of non-uniformity, 
which in turn can cause inaccurate gradient descent directions at every iteration and lead the optimization 
algorithm to undesirable solutions.14 In these non-diffeomorphic experiments, we also evaluate the overall 
results by the number of iterations that each algorithm takes to converge, and the best achievable ultimate 
CF value that preserves the topology, which is an indicator of the CF-distortion tradeoff. The experiments 
in this subsection are performed using our unidirectional Matlab implementation of CF minimization 
(Appendix A) and global regularization (Appendix B), meaning that only the forward CF needs to be 
explicitly evaluated. 

                                                           
14 Since the QVP is incorporated in an already inverse-consistent method (minimization of �
��), we do not expect to 

see any further improvement in the inverse-consistency (contrary to native symmetry) here. Note that the QVP 

constraint is not employed for the purpose of inverse-consistency, but to improve the registration through minimization 

of the non-uniformity errors. 
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4.1.1. Synthetic data 

We first compare the three methods on 
synthetic data, by registering two letters ‘B’ 
with noticeably different shapes. As the 
plot in Figure 3 demonstrates, minimizing �� (dark and light green) results in a 

relatively large difference �� − �� > 0, 

which is expected, since �� is not in any 

form accounted for in the optimization. 
Minimizing ��
� (dark and light red) 
reduces the gap between �� and ��, as equal 

weight is given to both of them in the 
optimization. Nevertheless, this approach – 
not being natively symmetric – does not 
guarantee the equality of the two native 
CFs. The proposed QVP approach with � =

.2 (dark and light blue), however, enforces 

a bound on ��� − ��� and therefore, as 

illustrated in the plot, produces 
transformations on the cost of which both 
native CFs agree (within the error margin �). In addition, this method converges at an 
earlier gradient descent iteration (~Itr. 750, 
see the orange rectangles in Figure 3 (top)) 
compared to the two others (~Itr. 1800), 
while resulting in lower final native CF 
values than the standard asymmetric and 
the symmetrized approaches do.15 

The better convergence of the QVP method 
may be related to the fact that its optimum 
general regularization parameter # = .2 is 
naturally lower compared to the other two 
techniques (# = .3 and # = .7 for the 
standard and the symmetrization methods), 
given that it also performs a separate 
inhomogeneous regularization (Eq. (15)). 

                                                           
15 It should be noted that the number of iterations is not indicative of the computational cost in our implementation, 

since each iteration is more expensive in the QVP method than in the other two methods, given the extra step of 

diffusion. As mentioned before, the final CF values are the lowest achieved that preserve the topology, thereby 

indicating the CF-distortion tradeoff. The fact that the optimum � was different for each method makes direct 

comparison of these convergence rates difficult. However, one can see that the best achievable convergence over a 

range of � values was improved by enforcing the QVP constraint. 
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Figure 3.  Registration of synthetic data by a) minimizing 

��, b) minimizing ����, and c) minimizing ���� with the 

proposed QVP constraint.  Top: Cyan and magenta indicate 

respectively the reference and the interpolated images, with 

blue being their intersection.  Middle/Bottom: The native 

CFs for each method, and a zoomed version. 
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This method allows the transformation to 
freely absorb and compress one ‘B’ into the 
other, since the corresponding volume 
change happens in regions where the 
intensities match, for which the 
inhomogeneous regularization, and 
consequently the total regularization is 
weak. The inhomogeneous regularization, 
in contrast, prevents a topology break by 
regularizing more aggressively in areas 
where the difference between the two 
images (and therefore the SSD force) is 
large. Conversely, the other two methods 
need a higher # to avoid topology break, 
and yet apply this strong general 
regularization to the entire image 
(including regions with matching 
intensities and no gradient force), hence a 
slower convergence and higher final CF 
(worse CF-distortion tradeoff). 

4.1.2. X-ray images 

Next, we compared the three methods on a 
pair of public jaw X-ray images acquired 
before (Figure 4a) and after (Figure 4b) an 
orthognathic surgery. Prior to deformable 
registration, high-resolution versions of the 
two images were superimposed, the upper 
jaws were rigidly aligned manually, and the 
images were low-pass-filtered and 
resampled to the lower resolution that is 
shown in Figure 4. As in the previous case, 
minimization of the standard asymmetric 
forward CF, �� (Figure 4, the two green 

curves), soon creates a considerable gap 
between the native CFs. Minimizing ��
� (Figure 4, the two red curves) results in a steady optimization of 
the average of the native CFs. However, since the native CFs are not individually considered, not only does 
the gap between them still mostly exist, but a jump that abruptly changes them – yet not their average – 
occurs around iteration 2000, which is possibly a sign of the potential susceptibility of the algorithm to 
local optima. In fact, an optimization algorithm might decide that it has converged and stop the procedure 
prematurely before iteration 2000, thus leaving the teeth region misaligned (as was actually the case here; 
the misalignment was observed in the deformed image for iterations before 2000). This is another example 
(similar to Figure 1) showing a transformation that decreases the SSD in one native space but increases it 
in the other native space, despite the fact that a symmetrized CF has been used. Conversely, the proposed 
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surgery, with c) registration results using the proposed QVP 
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QVP method with � = .2 (Figure 4, the two blue 
curves) produces the smallest native CF gap for 
iterations before 2000, while obtaining the lowest 
final CF values (best CF-distortion tradeoff) 
compared to the standard asymmetric and the 
symmetrized approaches. The warped image 
obtained by the QVP approach is depicted in 
Figure 4c, along with the computed deformation 
field. Results from the two other methods were 
visually similar, except for the fact that the 
displacement in the upper jaw, which is supposed 
to be small because of the initial rigid alignment 
of the upper jaws, was lowest in the deformation 
obtained by the QVP approach (2.5 pixels, 
averaged in an upper jaw mask), and therefore 
least affected by the general regularization, 
compared to the standard (3.9 pixels) and the 
symmetrization (3.2 pixels) approaches. This is 
likely again due to the lower value of # required 
by QVP, as explained in Section 4.1.1. 

4.1.3. Brain images 

We also tested the three algorithms on the mid-sagittal planes of 20 brain images taken from the publicly 
available OASIS database (Marcus et al., 2007), which we pre-processed in FreeSurfer (Dale et al., 1999; 
Fischl, 2012; Fischl et al., 1999). The intensity-normalized and resampled volumes (1-mm³ isotropic voxel 
size) were made upright by robust rigid registration (Reuter et al., 2010) of each volume to its left-right 
mirrored version. The sagittal slice located four voxels to the right of the mid-sagittal plane was extracted 
from each volume, and to adjust for any nodding rotation, was rigidly registered to that slice of the first 
volume, and resampled to the size 128×128. Out of the 20 sagittal slices corresponding to the 20 subjects, 
the one closest (in L2 norm) to the rest was chosen as the reference, and non-rigidly registered to the other 
19 subjects individually. For each subject and method, we ran the registration with 21 different values for 
general regularization parameter #. We observed throughout our experiments that a lower value of # that 
still preserved the topology consistently resulted in a lower final CF. Therefore, in order for each algorithm 
to present its best CF-distortion tradeoff, we inspected the results (19⨯3⨯21=1197 images), and for each 
subject and method we chose the one obtained with the lowest # containing no visible topology break. The 
optimally chosen # was the same for the symmetrization and the QVP (� = .17) methods in 13 subjects; 
however, for the other 6 subjects, QVP passed the visual inspection test at a lower # (see Figure 5 for 
examples). We computed the native asymmetry error as the mean absolute value of the difference of the 
two native CFs through all iterations. When averaged across subjects, this error was 161% and 16% higher 
for the asymmetric and the symmetrization techniques, respectively, compared to the proposed QVP 

approach. We also compared the final values of the native CFs, 	�� , ���, among the methods, which were 

(30%, 56%) and (5%, 4%) higher for the asymmetric and the symmetrization approaches, respectively, 
compared to the QVP method. We hypothesized that the QVP approach results in a better CF-distortion 

a 

b 

c 

Figure 5.  a) QVP registration results on four subjects 

with optimal values of λ.  b) Results of ���� 

minimization using the same λ as in (a). Note the 

distortion due to under-regularization in the encircled 

areas.  c) Results of ���� minimization using optimal 

(higher) values of λ, thus with higher CF values. 
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tradeoff by producing ultimate native CF values (for the lowest # preserving the topology) that are lower 
than those of the two other techniques. A left-tailed Student’s t-test with a .05 significance level rejected 
the null hypothesis when comparing the QVP with both the asymmetric (p = 10-6) and the symmetrization 
(p = .02) approaches. 

4.2. Diffeomorphic demons registration of 3D brain images 

Next, we examined the effects of QVP constraining on the accuracy of registration using 3D labeled data, 
by incorporating the QVP constraint into the diffeomorphic demons registration module (Vercauteren et 
al., 2008a) of ITK. We randomly selected 50 pairs of images, with each image chosen from a set of 40 3D 
brain volumes that had 37 neuroanatomical structures manually labeled (Fischl et al., 2002). These pairs 
were registered with and without the QVP constraint for various values of # (here the global regularization 
parameter of diffeomorphic demons) for 50 Newton iterations (enough for convergence). When QVP was 
used, four values of � = .05, .1, .2, .3 were tried (with � = .05 tried only for three values of # because of its 
high computational cost).16 

As illustrated in Figure 6, the inclusion of the QVP constraint consistently improved the results in every 
way that we quantified them. 1) QVP resulted in better alignment of manual labelings, i.e. lower number 
of differently-classified corresponding voxels (Figure 6, top). We then considered the CF-distortion tradeoff 
in the results. 2) QVP achieved a lower final CF value, despite the fact that it further regularizes the 
deformation field (Figure 6, 2nd row). This provides evidence that the QVP constraint leads the algorithm 
into a better optimum. 3) QVP resulted in transformations with lower distortion in terms of the elastic 
energy, computed following (Hagemann et al., 1999; Yanovsky et al., 2008a), and the number of voxels 
with Jacobian determinant values smaller than 10-3 or larger than 103 (Figure 6, two bottom rows). This 
improvement is expected, as QVP increases the regularization. 

                                                           
16 The standard symmetric-gradient implementation of ITK is not equivalent to minimizing �
�� . Given that this 

subsection focuses on registration accuracy rather than symmetry, to keep the results fair and reproducible, we only 

included the QVP constraint and did not modify the ITK implementation any further. Contrary to our experiments in 

Section 4.1, where we showed improvement by QVP compared to symmetrized registration, in Section 4.2 we assess 

the inclusion of QVP in the ITK implementation that is not symmetric. Therefore, the improvements observed in this 

subsection may be as a result of the symmetry as well. 

We also attempted to incorporate the QVP constraint into the more recent symmetric log-domain diffeomorphic 

demons registration (Vercauteren et al, 2008b). However, since this method parameterizes the transformation 

implicitly as a velocity field, and its public implementation does not allow for explicit modification of the deformation 

field, we could not apply the inhomogeneous diffusion of Section 3.3 directly to the deformation field. We tried 

applying the diffusion to the velocity field instead, but it performed poorly, since the QVP constraint is naturally very 

local, and any local modification of the velocity field propagates into a larger area in the deformation field. A 

specifically log-domain enforcement of the QVP constraint is a subject of the future research. 

Please note that a fair and accurate assessment of QVP constraining using any other registration methods would 

require explicit implementation of QVP in their source codes with their specific deformation parameterization; 

otherwise, directly comparing our diffeomorphic demons implementation of QVP with other (non-demons, non-QVP) 

methods would cause the difference between the registration methods to dominate the QVP effect. 
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Figure 6.  Adding the QVP constraint to the diffeomorphic demons algorithm results in improved 

alignment of manual labelings (top), better intensity matching (2nd row), and less distortion (two bottom 

rows). Quantities are averaged across 50 experiments, and the error bars indicate the standard error of the 

mean. This is the optimum range for �; we tried higher values of it, which degraded the performance of 

both methods, with QVP still outperforming. 
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Figure 7 depicts the CF-distortion tradeoff 
for the experiments.17 Indeed, a tighter QVP 
constraint (smaller �) always improved 
both the label matching and the CF-
distortion tradeoff. (This is true for � = .05 
as well, even though it did not reduce the 
final CF as much as � = .1.) Disabling the 
global regularization (# = 0) did not 
produce the lowest CF, indicating that too 
much flexibility increases the chances of 
being trapped in a local optimum. We stress 
that while it is impossible to exactly match 
the amount of regularization in the QVP 
and non-QVP case, in all of the 
aforementioned registration experiments 
with a wide range of regularization levels 
the incorporation of the QVP constraint 
yielded better accuracy and image 
matching, and lower levels of distortion. 

In practice, there may be a limit to the 
improvement that can be achieved by 
lowering �. In particular, the number of necessary diffusion iterations (for each Newton iteration) goes to 
infinity as � approaches zero, and for the extreme choice of � = 0 the QVP constraint is never satisfied. In 
our experiments, an order of 1, 10, and 100 rounds of diffusion were needed for � = .3, .2, � = .1, and � =

.05, respectively, to satisfy QVP for all the voxels in the image. 

Since the non-uniformity error is the culprit in breaking the symmetry of registration, it is expected that 
limiting this error by QVP constraining would make the registration more inverse-consistent. For the 
representative regularization value of # = .1, we repeated the experiments above by swapping the order of 
input images and registering them again once without QVP, and a second time with QVP (� = .3). We then 
computed the inverse-consistency error as � ‖�	 ∘ ���
� − 
‖��d
�

|$|⁄ , where �	 and �� are the two 

transformations achieved by forward and backward registrations. As demonstrated by the histogram in 
Figure 8, in all of the experiments, enforcing the QVP constraint reduced the inverse-consistency error 
(mean ± SD: 5.2% ± 3.3%). A paired left-sided Wilcoxon signed rank test revealed the significance value 
of p = 3⨯10-8. 

 

 

                                                           
17 Although individual comparison of the final CF value or the distortion among methods might not be meaningful, 

here we compare the CF-distortion tradeoff among methods, which can be used as a criterion to assess registration 

algorithms. 

Figure 7.  CF-distortion tradeoff in diffeomorphic 

registration experiments. Each curve corresponds to a 

unique value of �, and each point on the curve represents a 

different value of �. For each point on the curve, the CF and 

distortion values have been averaged across subjects. 
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5. Conclusions 

We have proposed a quasi-volume-
preserving (QVP) constraint on the 
deformation field in deformable 
registration that keeps the optimization 
algorithm away from the regions violating 
the uniformity of the cost function integral 
and consequently the symmetry. The main 
focus of this work is addressing the 
inaccuracies arising from the non-
uniformity of the cost functions, which is 
the major distinction between our method 
and the symmetrization and mid-space 
techniques. In that regard, we have shown 
theoretically and through experiments that 
the QVP constraint improves, not only 
native symmetry, but the overall 
registration results. Enforcing the QVP 
constraint led to cross-subject registration 
with increased accuracy in the alignment of 
manually defined neuroanatomical structures, better tradeoff between the intensity error and distortion in 
the warp field, improved native symmetry, and reduced susceptibility to local optima. Subjects of the future 
research include: intrinsic enforcement of QVP via specific parameterization of the deformation field 
(without the need for blurring the displacement field), optimal � determination based on image properties, 
proving the convergence of and further stabilizing the diffusion step, and assessing the incorporation of 
QVP in the mid-space approaches.  
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Appendix A. Unidirectional minimization of the average cost function 

We minimize the average CF (Eq. (7)) in the experiments of Section 4.1 via gradient descent in the same 
unidirectional manner as in (Leow et al., 2007), with differences that are outlined here. Basically, we 
calculate the variation of the average CF with respect to the transformation, %��
� %��
�⁄ , and update ��
� 
towards its opposite (descent) direction. 

��
� is the sum of two terms, with the first term, �� 2⁄ , being written in terms of ��
� as in Eq. (1). The 

variation of �� with respect to ��
� is straightforward to compute: 

 %��%��
� = ��	��
�, � ∘ ��
���∇�� ∘ ��
�, (17) 

where �� is the partial derivative of � with respect to the &th argument, and ∇ is the image gradient operator. 
The second term of ��
� is �� 2⁄ , which is written in terms of ��	��� as in Eq. (4) and, yet, is not an explicit 

function of ��
�.18 Here, instead of direct inversion of �, we compute the variation of �� with respect to ��
� indirectly. First we note that the variation of �� with respect to ��	��� can be computed similarly to 

Eq. (17), as: 

 %��%��	��� = �		� ∘ ��	���, ������∇�� ∘ ��	���. (18) 

Let us assume that a small variation Δ��
� changes the transformation as �∗�
� = ��
� + Δ��
�. This 

change results in a small variation in ��	���, as ��	∗��� = ��	��� + Δ��	���. Keeping the first-order 

terms, the relationship ��	∗ ∘ �∗�
� = 
 leads to: 

 Δ��		��
�� = −���
��	Δ��
�, (19) 

where ���
� is the Jacobian matrix of ��
� (Leow et al., 2007). Furthermore, by definition, �� will vary as 

follows: 

 
Δ�� = � ' %��%��	���(� Δ��	���d�

�
. (20) 

Making the change of variable � = ��
� and substituting for Δ��		��
�� from Eq. (19) gives: 

 
Δ�� = � )−��
����
��	� ' %��%��	���(

������

*� Δ��
�d

�

, (21) 

with ��
� ≔ det ���
�. The variation of �� with respect to ��
� is therefore derived as: 

 %��%��
� = −+�
� ' %��%��	���(
������

, (22) 

                                                           
18 Although �� can be written with respect to ���� as in Eq. (5), the inclusion of ���� in the integral makes the 

computation of the variation complicated. 
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where +�
� = ��
����
��	� is the cofactor matrix of ���
�, defined as +�� = �−1����,��  with , the 

minor of �� (i.e., ,�� is the determinant of the matrix that results from deleting row - and column . of ��). 

Substituting from Eq. (18), 

 %��%��
� = −�		��
�, � ∘ ��
��+�
�∇��
�, (23) 

and combining Eqs. (7,17,23), the variation of ��
� with respect to ��
� is derived as follows: 

 %��
�%��
� =
��	��
�, � ∘ ��
���∇�� ∘ ��
� − �		��
�, � ∘ ��
��+�
�∇��
�

2
. (24) 

For instance, in case of the SSD CF, i.e. ��
, �� ≔ �
 − ���, Eq. (24) reduces to: 

 %��
�%��
� = −	��
� − � ∘ ��
��	+�
�∇��
� + �∇�� ∘ ��
��. (25) 

Note that the descent direction for ��
� was here computed by deriving both its terms – �� and �� – 

consistently with respect to ��
�. On the contrary, in (Leow et al., 2007), the descent directions are 
computed separately for �� and �� with respect to ��
� and ��	���, respectively, with the latter direction 

being subsequently translated in terms of change in ��
�.19 

Next, we explain how to incorporate the demons regularization symmetrically. 

Appendix B. Unidirectional symmetric demons regularization 

In addition to QVP, we used a global regularization in the experiments, which is an essential part of the 
demons registration (Thirion, 1998). In our 2D implementation in Section 4.1, we included a general 
Tikhonov term ½‖���
� − �‖��  (weighted by #, with � the identity matrix) inside the integral of the �-
native CF (Eq. (1)), whereas in Section 4.2 we used ITK’s built-in regularization. The variation of /� ≔� ½‖���
� − �‖��d
�  with respect to ��
� can be derived as: 

 %/�%��
� = −∇�
���
�, (26) 

where ∇�
� is the Laplacian with respect to 
 performed on each element of �. Updating the deformation 

field in the opposite direction of this variation is equivalent to solving the diffusion equation, which in turn 
results in a Gaussian blurring in the displacement field, i.e. what is done directly in the original demons 
algorithm.20 The average CF in Eq. (7), however, includes the �-native CF (Eq. (4)), which also needs such 
a term as /� ≔ � ½‖���	��� − �‖��d��  for the symmetry to be preserved. To minimize this term 

                                                           
19 Replacing ���� with ����� in Eqs. (24,25) leads to the results in (Leow et al., 2007). In the case of 1D images, for 

instance, ��
��� = 1 making Eq. (25) similar to the demons registration with symmetric gradients, whereas 

���
��� = ��
′(�). 
20 Using the displacement ���� − � instead of the deformation ���� field will not alter the regularization; the term �, 

being linear, is eliminated by the Laplacian, and being anti-symmetric, is cancelled out by the symmetric Gaussian 

blurring. 
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unidirectionally, we need to compute its variation with respect to ��
�. As in Appendix A, we first compute 
its variation with respect to ��	���, 
 %/�%��	��� = −∇�

���	���, (27) 

and then derive its variation with respect to ��
� using the change of variable � = ��
� and Eq. (22), as: 

 %/�%��
� = −+�
� ' %/�%��	���(
������

 

= +�
��∇��
!
������

. 
(28) 

 

So the problem boils down to the computation of ∇�
�
 = ∇� ⋅ ∇�
, represented in 
. The gradient of 
 with 

respect to � is simply the inverse Jacobian matrix: 

 ∇�
 = ���
��	, (29) 

which we shall denote by 0 ≔ ���	.21 We now compute the divergence of the above: 

 
∇� ⋅ ∇�
 = 1�0:,�����

, (30) 

where the subscript �: , &� means the &th column of the matrix. The chain rule implies: 

 ���� = 1 �
���� ��
��

 

= 10�,� ��
��

, 
(31) 

and combining Eqs. (30,31) leads to: 

 
∇�
�
 = 1�0:,��
� 0�,�

�,�

 

= 12�0�
� 0�3
:,��

. 
(32) 

We now compute 
��

���
 by taking the derivative of the relationship 0�� = �, as follows: 

 ��
� �0��� = 0, (33) 

                                                           
21 For brevity, we omit ��� in most of the rest of this appendix. 
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 �0�
� �� + 0 ��
� �� = 0, (34) 

 �0�
�  = −0 ��
� �����	 

= −0 ��
� ��0. 

(35) 

Equation (32) thus becomes: 

 
∇�
�
 = − 140 ��
� ��00�5

:,��

 

= −0ℎ, 

(36) 

with the vector ℎ defined as: 

 
ℎ ≔ 14 ��
� �� 00�5

:,��

. (37) 

The 6th element of ℎ can be calculated as follows: 

 
ℎ = 14 ��
� �� 00�5

 ,��

 

= 114 ��
� ��5
 ,�

	00��
�,�

��

 

= 1 ��� �
��
� 	00��
�,�

�,�

 

= 17�,� 	00��
�,�

�,�

 

= tr	7 00�� 
= tr	0�7 0�, 

(38) 

 

where �  is the 6th element of �, and 7  is the Hessian matrix of � . By combining Eqs. (28,36), the 
variation of /� with respect to ��
� is obtained as: 

 %/�%��
� = −+�
�0�
�ℎ�
�. (39) 

Therefore, we first compute the elements of the vector ℎ�
�, followed by the variation of /� with respect 

to ��
�, which allows for  ��	��� to be regularized without being explicitly calculated. 

An issue that we faced in the computation of Eq. (39) is the calculation of the inverse Jacobian matrix 0 
where diffeomorphism is not preserved. As a remedy, we only performed the regularization of ��	 in 
regions where the Jacobian matrix had a positive determinant and singular values greater than a threshold 
(.25 in our experiments). 
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Appendix C. Deviation of the Jacobian determinant 

Using the following Theorem, we can see that for a diffeomorphic �-dimensional transformation, ��
� − 1 
is bounded from above and below by two functions of ‖���
� − �‖�, as follows: 

 
max�1 − ‖���
� − �‖� , 0�� − 1 ≤ ��
� − 1 ≤ 41 +

1√� ‖���
� − �‖�5� − 1. (40) 

Both of these bounds approach 0 monotonically as ‖���
� − �‖� → 0, thereby taking ��
� − 1 to 0 
following the squeeze theorem.22 

Theorem.  For a � × � matrix , with det , ≥ 0, we have the following bounds for det ,: 

 
max�1 − ‖, − �‖� , 0�� ≤ det , ≤ 41 +

1√� ‖, − �‖�5� , (41) 

where � is the � × � identity matrix. 

Proof.  We have det , ≤ |det ,| = ∏ :��
��	 , where :� is the &th singular value of ,. According to the 

triangular inequality for the Frobenius norm, 

 ‖, − �‖� ≥ ‖,‖� − ‖�‖� = ;1 :���

��	

− √�. (42) 

Combining this with the root mean square-geometric mean inequality, <	

�
∑ :���
��	 ≥ 	∏ :��

��	 ��

�, yields: 

 
det , ≤ 41 +

1√� ‖, − �‖�5� , (43) 

which proves the right-hand side of Ineq. (41). Note that this upper bound is a supremum, since for a given ‖, − �‖�, equality can be achieved, e.g., for , = >1 +
	

√�
‖, − �‖�? �. We did not need det , ≥ 0 to 

prove this upper bound. 

Regarding the lower bound, one can see that for ‖, − �‖� ≥ 1 the lower limit det , = 0 can be reached, 
for instance for a diagonal , whose first diagonal entry is 0, and all the rest of its � − 1 diagonal entries 

are equal to 1 + < 	

��	
�‖, − �‖�� − 1�. Concerning the case with ‖, − �‖� < 1, we use the inequality :"#$�@ − A� ≤ :"#$�@� + :"%&�A� (Horn and Johnson, 1994), with :"#$�@� and :"%&�@� the minimum 

and maximum singular value of @, respectively. Letting @ = , and A = , − � gives: 

 1 = :"#$��� ≤ :"#$�,� + :"%&�, − ��. (44) 

Since :"%&�, − �� ≤ ‖, − �‖�, we have: 

                                                           
22 This approach may reduce also the divergence of the displacement field. 
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 :"#$�,� ≥ 1 − ‖, − �‖� . (45) 

Considering that det , = |det ,| = ∏ :��,��
��	 ≥ :"#$�,�� and the assumption 1 − ‖, − �‖� > 0, 

we raise the equation above to the power of �, resulting in: 

 det , ≥ �1 − ‖, − �‖��� . (46) 

Finally, we rewrite the two cases of ‖, − �‖� ≥ 1 and ‖, − �‖� < 1 in the following compact form, 
which proves the left-hand side of Ineq. (41): 

 max�1 − ‖, − �‖� , 0�� ≤ det ,. (47) 

□ 
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