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Abstract. This paper addresses the problem of creating probabilistic
brain atlases from manually labeled training data. We propose a general
mesh-based atlas representation, and compare different atlas models by
evaluating their posterior probabilities and the posterior probabilities
of their parameters. Using such a Baysian framework, we show that
the widely used ”average” brain atlases constitute relatively poor pri-
ors, partly because they tend to overfit the training data, and partly
because they do not allow to align corresponding anatomical features
across datasets. We also demonstrate that much more powerful repre-
sentations can be built using content-adaptive meshes that incorporate
non-rigid deformation field models. We believe extracting optimal prior
probability distributions from training data is crucial in light of the cen-
tral role priors play in many automated brain MRI analysis techniques.

1 Introduction

The study of many neurodegenerative and psychiatric diseases benefits from
fully-automated techniques that are able to reliably assign a neuroanatomical
label to each voxel in MR images of the brain. In order to cope with the com-
plex anatomy of the human brain, the large overlap in intensity characteristics
between structures of interest, and the dependency of MRI intensities on the
acquisition sequence used, state-of-the-art MRI brain labeling techniques rely
on prior information in the form of probabilistic atlases [1–6]. Typically, such
atlases are created by voxel-wise averaging of neuroanatomical labels over a col-
lection of manually labeled training datasets. In such an approach, the training
datasets are first registered together, and the prior probability of each voxel
being occupied by a particular structure is calculated as the relative frequency
that structure occurred at that voxel across the training datasets.

While widely used, the quality of such ”average” atlases as prior probabil-
ity distributions has, to our knowledge, never been thoroughly investigated, and
several open issues remain. In [6], for example, the authors are faced with the
problem of creating a probabilistic atlas for newborn brain from only three train-
ing datasets. It is clear that, due to the enormous variability in cortical patterns
across individuals, the average of three segmentations generalizes poorly to sub-
jects not included in the training database, and the authors decided to blur
their average atlas. But how much blurring should be used to obtain the ”opti-
mal” atlas? Is there still a need for blurring when more training data is used?



Another question relates to the use of non-rigid registration techniques. Often
atlases are constructed based on affine co-registrations of the training datasets,
but are warped using non-rigid registration during the segmentation phase [7, 5,
2, 4]. While this inconsistency can be overcome by deforming the training data
during the atlas construction phase itself [8, 9], a central question remains: how
should the flexibility of the deformation models be chosen?

In this paper we explore ways to refine our atlas construction abilities beyond
those currently available. From the discussion above, it is clear that finding good
atlas models cannot simply be guided by how well a model describes the available
training data: more complex models can always fit the training data better, lead-
ing to implausible, over-parameterized results. Rather, we will compare different
models by evaluating their posterior probabilities and the posterior probabilities
of their parameters. It is well-known that complex models are self-penalizing
under Bayes’ rule; we will show that a rigorous Bayesian approach is able to,
among other things, provide quantitative answers to the questions raised above.

For the remainder of this paper, we will work with 2-dimensional image
domains, with the understanding that the proposed techniques translate directly
into 3 dimensions as well.

2 Mesh-based atlas models

Let L = {li, i = 1, 2, . . . , I} be a manually labeled image with a total of I pixels,
where li ∈ {1, 2, . . . , K} denotes the one of K possible labels assigned to pixel
i. Partitioning the image domain D into T non-overlapping triangular elements,
denoted by Dt, t = 1, 2, . . . T , so that D = ∪T

t=1Dt, we model the probability of
having label li at pixel i by interpolation from the values at the nodes of the
element Dt in which i falls:

p(li|αt,j , xt,j) =
3∑

j=1

αli
t,jϕt,j(xi). (1)

In equation 1, xi is the position of the the ith pixel, and αt,j = {α1
t,j, α

2
t,j , . . . , α

K
t,j}

denotes the set of label probabilities at the jth node of Dt. Furthermore, xt,j is
the position of the jth node of Dt, and ϕt,j(x) is the linear interpolation basis
function associated with this node.

For notational convenience, we will index the mesh nodes by n = 1, 2, . . . , N

for the remainder of the paper, keeping in mind that each mesh node is typically
shared among several triangles. Using this notation, equation 1 can be extended
to cover the whole image domain D as follows:

p(li|α, x,K) =

N∑

n=1

αli
nφn(xi) (2)

where α = {α1, α2, . . . , αN} and x = {x1, x2, . . . , xN} is the set of the label
probabilities and the positions of the mesh nodes, respectively, K denotes a



simplicial complex specifying the mesh connectivity, and φn(x) is the sum of the
interpolation basis functions ϕt,j(x) of the elements attached to node n.

Finally, assuming conditional independence of the labels between pixels given
the mesh parameters, we have p(L|α, x,K) =

∏I

i=1 p(li|α, x,K) for the proba-
bility of seeing label image L.

2.1 First level of inference

Given certain training data in the form of M label images Lm, m = 1, 2, . . . , M ,
and letting {x1, x2, . . . , xM} denote the positions of the mesh nodes in each of
the expert labelings, we may wish to infer what values of α and {x1, x2, . . . , xM}
best fit the training data. To this end, we define a topology-preserving Markov
random field prior on the position of the mesh nodes:

p(x|β, xr,K) ∝ exp(−U(x|xr,K)

β
),

with U(x|xr,K) =

T∑

t=1

−AK
t (xr) log(AK

t (x)) (3)

where AK
t (x) denotes the area of the triangle t in a mesh with position x, x

r

is the most likely position of the mesh nodes (in the remainder called reference

position), and the parameter β controls how far the mesh nodes can deviate from
this reference position. Furthermore, having no specific prior knowledge about
the values of the label probabilities α, we use a flat prior: p(α) ∝ 1.

In a Bayesian setting, assessing the Maximum A Posteriori (MAP) parame-

ters {α̂, x̂
1
, . . . , x̂

M} involves minimizing

M∑

m=1

− log p(Lm|α, xm,K)− log p(xm|β, xr,K). (4)

We alternatively optimize the label probabilities in the mesh nodes α, keep-
ing the position parameters fixed, and update each of the positions x

m while
keeping the label probabilities fixed. Optimizing the positions is a registration
process, bringing each of the training samples in spatial correspondence with the
atlas. Since the gradient of equation 4 with respect to x

m is given by analytical
expressions, we perform this registration by gradient descent. Assessing the opti-
mal label probabilities in the mesh nodes for a given registration of the training
samples can be done iteratively using an Expectation-Maximization (EM) algo-
rithm. At each iteration, we calculate weights that associate each pixel in each
example with each of the nodes attached to the triangle the pixel falls in

Wm
i,n =

α
lmi
n φm

n (xi)
∑N

n′=1 α
lm
i

n′ φm
n′(xi)

,

and update the parameters in each node n accordingly:

αk
n ←

∑M

m=1

∑I

i=1 Wm
i,n δlm

i
,k

∑M

m=1

∑I

i=1 Wm
i,n

∀n, k.



2.2 Second level of inference

The results of the atlas parameter estimation scheme described in section 2.1
depend heavily on the choice of the hyper-parameter β regulating the flexibility
of the deformation fields. Having no prior knowledge regarding the ”correct”
value of β, we may assign it a flat prior. Using the Bayesian framework, we can
then assess its MAP value β̂ by maximizing

p(L1, . . . , LM |β, xr,K) =

∫

α

(
M∏

m=1

p(Lm|α, β, xr,K)

)
p(α)dα (5)

with p(Lm|α, β, xr,K) =

∫

xm

p(Lm|α, xm,K)p(xm|β, xr,K)dx
m.

Assuming that p(Lm|α, xm,K)p(xm|β, xr,K) has a peak at a position x
m
α , we

may approximate p(Lm|α, β, xr,K) using Laplace’s method, i.e. by locally ap-
proximating the integrand by an unnormalized Gaussian. Using a similar Laplace
approximation for the prior p(xm|β, xr,K) in combination with the pseudo-
likelihood approximation, and ignoring interdependencies between neighboring
mesh nodes, we obtain1

p(Lm|α, β, xr,K) ≃ p(Lm|α, xm
α ,K) ·

N∏

n=1

Om
n (6)

with Om
n = exp

(
− U(xm

α |xr,K) − U(x
m|n
α |xr,K)

β

)√det(Jm
n )

det(Im
n )

where I
m
n = D2

xn

[
− log p(Lm|α, x,K)− log p(x|β, xr,K)

]∣∣∣∣
x=xm

α

and J
m
n = D2

xn

[
− log p(x|β, xr,K)

]∣∣∣∣
x=x

m|n
α

.

Here, x
m|n
α denotes the set of mesh positions that is identical to x

m
α except

for the position of node n, which is replaced by the position to maximizes the
prior p(x|β, xr,K) when the positions of all other mesh nodes are fixed to their
value in x

m
α . Note that calculating this optimal node position, as well as evalu-

ating the factors Om
n , only involves those triangles that are directly attached to

the node under investigation; we use Newton’s method to carry out the actual
optimization.

Plugging equation 6 into equation 5, approximating x
m
α and the factors Om

n

by their values at α = α̂, introducing the EM algorithm’s weights, and using
Stirling’s approximation, x! ≃ xxe−x, we finally obtain

p(L1, . . . , LM |β, xr,K) ≃
M∏

m=1

N∏

n=1

Ôm
n ·

N∏

n=1

(K−1)! N̂n!

(N̂n+K−1)!
·

M∏

m=1

p(Lm|α̂, x̂
m

,K)

(7)

1 Here, D
2

θ denotes a matrix of second derivatives, or Hessian



where N̂n =
[∑M

m=1

∑I

i=1 Ŵm
i,n

]
denotes the total number of pixels associated

with node n at the MAP parameters {α̂, x̂
1
, . . . , x̂

M}. Equipped with equation 7,

we assess the MAP estimate β̂ using a line search algorithm.

2.3 Third level of inference

We have assumed so far that the connectivity K and the reference position x
r of

the atlas mesh are known beforehand. Using the Bayesian framework, however,
we can assign objective preferences to alternative models. Having no a priori
reason to prefer one model over the other, we can rank alternatives based on their
likelihood p(L1, . . . , LM |xr,K) =

∫
β

p(L1, . . . , LM |β, xr,K) p(β) dβ, which can
be approximated, using Laplace’s method, by

(
√

2π p(β̂)

/√
∂2

∂β2

[
−log p(L1,...,LM |β,xr,K)

]∣∣∣∣
β=β̂

)
· p(L1, . . . , LM |β̂, xr,K).

The first factor is typically overwhelmed by the second one, so we will ignore
it and compare alternative models based on equation 7, evaluated at the MAP
estimate β̂.

While it is straightforward to compare models using equation 7, finding the
mesh with connectivity and reference position that explicitly maximizes equa-
tion 7 is another matter. In this paper, we start from a dense regular triangular
mesh, and use a mesh simplification technique borrowed from the computer
graphics literature [10]. The technique yields increasingly coarse meshes by it-
eratively unifying two adjacent mesh nodes into a single node using a so-called
edge collapse operation; each iteration removes the edge that yields the highest
increase (or lowest decrease) in equation 7. For each edge collapse operation,
we optimize the reference position x

r
n of the unified node n with respect to

equation 7 using Powell’s direction set. Finally, from the resulting hierarchy of
meshes, we retain the one that yields the highest likelihood as evaluated by
equation 7.

2.4 Description length interpretation

Given the central role of equation 7 in this paper, it is instructive to write it down
in terms of the length, measured in bits, of the shortest message that communi-
cates the training data without loss to a receiver when a certain model {K, xr} is
used. Following Shannon theory, this length is − log2 p(L1, . . . , LM |xr,K), which
we approximate by (equation 7)

−
M∑

m=1

N∑

n=1

log2 Ôm
n −

N∑

n=1

log2

(K−1)! N̂n!

(N̂n+K−1)!
−

M∑

m=1

log2 p(Lm|α̂, x̂
m

,K).

According to the three terms, the message can be imagined as being subdivided
into three blocks. Prior to starting the communication, the transmitter estimates



the MAP estimates {α̂, x̂
1
, . . . , x̂

M} as laid out in section 2.1. It then sends a
message block that encodes, for each label image, the position of each mesh
node (first term). Subsequently, a message block is sent that encodes the prior
probabilities in each mesh node (second term), after which the actual data can
be encoded using the model with the MAP parameters (third term).

3 Experiments

We evaluated the performance of our mesh-based atlas models on 2-D training
data derived from publicly available manual annotations2. In a first experiment,
we derived probabilistic atlases from 3 training datasets with 4 labels for three
different model sub-groups (figure 1). The first sub-group uses a regular trian-
gular mesh model and prevents the mesh nodes from moving away from the
reference position x

r by setting β = 0 throughout. Within this sub-group we
measured the description length as the resolution of the mesh, i.e. the distance
between the mesh nodes, is varied, and retained the best model (top right in
figure 1). The second sub-group also uses a regular triangular mesh model, but
explicitly searches for the best β as the resolution of the mesh is varied (bottom
left of figure 1). Finally, we used the mesh simplification procedure outlined in
section 2.3 (bottom right of figure 1). The first sub-group did not perform well
compared to the other groups: while it saves bits by not needing to encode the
mesh node positions, it does not model the data very well, resulting in a long
data message block. Clearly, letting β vary, as in the second sub-group, pays off,
but an even shorter description length is obtained using the mesh simplification
procedure.

In a second experiment, we added 15 more training datasets and searched
again for the best resolution within the first sub-group (top part of figure 2).
Comparing this with the result based on only three training datasets reveals that
the number of mesh nodes has increased. Note that using a higher mesh resolu-
tion is akin to reducing the amount of blurring in the resulting atlas; Bayesian
inference thus automatically and quantitatively determines the ”correct” amount
of blurring that should be applied. Also note that, while the mesh does have more
nodes when eighteen training datasets are used, there are still far fewer mesh
nodes than there are pixels (around 25 times fewer). The bottom part of figure 2
shows the atlas obtained by pixel-wise averaging, i.e. by setting the mesh resolu-
tion so high that each node corresponds to exactly one pixel. From the message
length representation, it is clear that this is not a good model: there are far too
many model parameters, resulting in a severely overfitted model.

In a final experiment, we searched for the best model in the same three sub-
groups used before, using 9 training datasets containing 11 labels (figure 3).
Again, the best atlas is obtained by mesh simplification.

2 The Internet Brain Segmentation Repository, http://www.cma.mgh.harvard.edu/ibsr



Fig. 1. Optimal probabilis-
tic atlases constructed from
three training datasets with
four labels, for three sub-
groups of our mesh-based at-
las models (see text for de-
tails). The top left figure de-
picts the first dataset of the
training data; the two lower
figures show atlases warped
onto this dataset. Under each
atlas is depicted a schematic
view of the shortest mes-
sage that encodes the train-
ing data: dark gray indicates
the node position message
block, intermediate gray rep-
resents the prior probabilities
message block, and bright
gray stands for the data mes-
sage block.

Fig. 2. ”Average” atlas for
eighteen training datasets at
optimal resolution (top), and
at pixel resolution (bottom).

Fig. 3. Optimal probabilistic atlases based on nine
images with eleven labels. The left side of the brain
has been color-coded in the atlases for visualization
purposes.



4 Discussion

While this paper concentrated on constructing prior probability distributions
from training data, in practical segmentation scenarios the resulting atlases need
to be aligned with the MRI data at hand before segmentation can commence.
This requires that appropriate intensity distribution models are associated with
each label. The gradient of the mesh node positions is then given in analytical
form through equation 2, so that atlas-to-image registration is straight-forward
to implement. Similar registration techniques that directly align priors with MR
brain images have been described in [4, 7, 5].

Our future work will concentrate on implementing our atlas construction
techniques in 3 dimensions, using tetrahedral rather than triangular meshes. We
also plan to explore even more compact representations by explicitly encoding
which subset of labels can occur at any given location throughout the brain.
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