Functional Magnetic Resonance Imaging Reveals Neuroanatomical Dissociations During Semantic Integration in Schizophrenia

Gina R. Kuperberg, W. Caroline West, Balaji M. Lakshmanan, and Don Goff

Background: Schizophrenia symptoms can be conceptualized in terms of a breakdown of a balance between 1) activating, retrieving, and matching stored representations to incoming information (semantic memory-based processing) and 2) fully integrating activated semantic representations with one another and with other types of representations to form a gestalt representation of meaning (semantic integration). Semantic memory-based processes are relatively more dependent on inferior frontal and temporal cortices, whereas particularly demanding integrative processes additionally recruit the dorsolateral prefrontal cortex (DLPFC) and sometimes parietal cortices. We used functional magnetic resonance imaging (fMRI) to determine whether the modulation of temporal/inferior frontal cortices and the DLPFC can be neuroanatomically dissociated in schizophrenia, as semantic integration demands increase. Integration demands were manipulated by varying the nature (concrete vs. abstract) and the congruity (incongruous vs. congruous) of words within sentences.

Methods: Sixteen right-handed schizophrenia patients and 16 healthy volunteers, matched on age and parental socioeconomic status, underwent event-related fMRI scanning while they read sentences. Blood oxygen level dependent (BOLD) effects were contrasted to words within sentences that were 1) concrete versus abstract and 2) semantically incongruous versus congruous with their preceding contexts.

Results: In both contrasts, large networks mediating the activation and retrieval of verbal and imagistic representations were normally modulated in patients. However, unlike control subjects, patients failed to recruit the DLPFC, medial frontal and parietal cortices to incongruous (relative to congruous) sentences, and failed to recruit the DLPFC to concrete (relative to abstract) sentences.

Conclusions: As meaning is built from language, schizophrenia patients demonstrate a neuroanatomical dissociation in the modulation of temporal/inferior frontal cortices and the DLPFC.

Key Words: Context, DLPFC, fMRI, language, prefrontal cortex, schizophrenia, semantic, temporal cortex

Deriving an accurate representation of meaning requires us to strike a fine balance between two types of semantic processes: 1) activating, retrieving, and matching stored semantic information with incoming material (semantic memory-based processes), and 2) fully integrating activated semantic representations with one another and with other types of activated representations to derive a gestalt meaning (semantic integration). Both mechanisms are used to construct the meanings of words and whole sentences. Semantic activation, retrieval and matching are thought to be most reliable on temporal and inferior frontal cortices, whereas particularly demanding semantic integrative processes additionally engage more superior dorsolateral prefrontal cortices (DLPFC), sometimes together with parietal cortices. This study used functional magnetic resonance imaging (fMRI) to demonstrate a neuroanatomical dissociation in the modulation of temporal/inferior frontal cortices and the DLPFC in schizophrenia, as meaning is built from language.

Encountering all types of words leads to the retrieval and activation of stored lexico-semantic representations, reflected by activity within left-lateralized temporal and inferior frontal cortices (1,2). In addition, words with concrete meanings activate “imagistic” representations to a greater degree than abstract words (3). This is reflected by widespread activity, distributed across bilateral ventromedial temporal, orbitalfrontal, and occipito-parietal cortices, known to subserve perceptual processing of real-world objects (4–6). Therefore, to derive a full representation of concrete word meaning, activated verbal and imagistic perceptual semantic representations must be integrated and, in some cases, undergo additional manipulation, such as mental imagery (7,8). These additional demands of integrating and manipulating the meaning of concrete relative to abstract words might be reflected by the increased recruitment of the DLPFC to concrete words (4,5).

Comprehending the meaning of whole sentences also engages semantic memory-based processes in which incoming relationships between content words are matched against relationships that are prestored within semantic memory (9,10)—operations that are again mediated by inferior frontal and sometimes temporal cortices (11–13). In addition, integrative processes are engaged, whereby activated semantic and syntactic representations are combined to determine “who does what to whom” in a sentence. This semantic-syntactic integrative activity is also thought to be mediated within left-lateralized inferior frontal and temporal cortices (14,15). However, when integration demands are particularly high, additional regions, including the DLPFC and parietal cortices, are recruited (13).

In schizophrenia, there is evidence from semantic priming studies that patients’ automatic activation of lexico-semantic representations is normal and, in thought-disordered patients, even increased (16–20; reviewed in 21,22). Behavioral studies also suggest that many aspects of semantic memory organization
are normal in schizophrenia (23) and that patients can successfully retrieve semantic information, so long as appropriate semantic cues are provided (24,25). Neuroanatomically, activity within the inferior frontal cortex is generally preserved during deep semantic encoding (26,27), and functional connectivity between temporal and inferior frontal cortices might be increased (28). Abnormal increases in activity within temporal-occipital cortices have been reported in patients when processing indirectly related (vs. unrelated) word-pairs (29), during semantic (vs. shallow) verbal encoding (27), and when completing sentences given highly predictable contexts (vs. reading the same single word) (30).

In contrast to this normal or increased semantic memory-based activity in schizophrenia, evidence from behavioral and event-related potential (ERP) studies suggests that patients are relatively impaired when required to integrate activated semantic representations with one another or with other types of activated representations. There is evidence for such impairments at the level of both words and whole sentences. For example, under nonautomatic experimental conditions, patients fail to fully integrate semantic representations of prime and target words, leading to relatively reduced semantic priming effects (31; reviewed in 21). And, during sentence comprehension, patients show abnormally reduced electrophysiological responses when semantic-syntactic integration demands are increased (32–36).1

Despite this behavioral and ERP evidence for a dissociation between 1) preserved or increased activity in association with semantic memory-based processing and 2) decreased activity with increased integration demands in schizophrenia, there have been no attempts to determine how this dissociation plays out at a neuroanatomical level. In paradigms probing the maintenance and use of contextual information with simple nonverbal stimuli, clear functional dissociations between activity within the DLPFC and other regions have been described in schizophrenia (37–39). The goal of this study was to determine whether patients show such neuroanatomical dissociations when semantic integration demands are increased, as meaning is built from language. We aimed to dissociate activity within temporal-inferior frontal networks from activity within the DLPFC in schizophrenia in two ways: first, by manipulating the concreteness of individual words within sentences; and second, by manipulating the semantic congruity of a sentence-final word with its preceding context. These factors—Concreteness and Congruity—were fully crossed, such that each participant viewed sentences composed of concrete and abstract words, in which the final words were either congruous or incongruous with their preceding stems (Table 1; see [40] for a similar design).

We predicted that, in both contrasts (concrete vs. abstract and incongruous vs. congruous sentences), patients would show normal activation, retrieval, and matching of verbal and perceptual semantic representations, reflected by normal modulation of occipito-temporal and inferior frontal cortices (26,27). On the basis of our previous fMRI study using semantically related word-pairs (29), we also considered the possibility that patients would show inappropriate increases in activity within inferior temporal and fusiform cortices to the incongruous sentences, which contained more semantically related words than the congruous sentences. Critically, on the basis of behavioral and ERP findings at the level of words (21,22,31) and sentences (32–36), we predicted that patients would be relatively impaired in demanding semantic integrative processes and that this would be reflected by a failure to recruit the DLPFC to concrete (vs. abstract) and to incongruous (vs. congruous) sentences.

Methods and Materials

Materials

Two-hundred-and-forty 10-word congruous sentences, one-half primarily containing concrete words and one-half containing abstract words, matched on frequency and number of letters, were constructed (Table 1 and Table 1 in Supplement 1). The sentences were divided into two counterbalanced lists. Incongruous abstract and concrete sentences were generated by pseudo-randomizing the final words of the congruous abstract and concrete sentences respectively. Each list contained 60 sentences in each sentence type. Although each of the 240 sentence stems and final words appeared only once per list, across lists they each appeared in both the congruous and incongruous sentences.

Participants

Sixteen patients meeting DSM-IV criteria for schizophrenia (41) (confirmed with the SCID [42]), receiving stable doses of atypical antipsychotic drugs, were recruited from the Lindemann Mental Health Center, Boston. Sixteen demographically matched volunteers, receiving no medication and without histories of psychiatric disorders (42), were recruited by advertisement. All participants were native, primarily monolingual English speakers who had not learned any other language before age five. All were right-handed (43,44) and without histories of head trauma, neurological disorder, substance abuse within six months, or substance dependence. Written consent was obtained following the guidelines of the Partners Healthcare Institutional Review Board. Clinical assessments were carried out within 2 weeks of scanning. Demographic and clinical data are summarized in Table 2.

Stimulus Presentation and Task

A typical 8-sec trial is depicted in Figure 1 in Supplement 1. Each trial began with a centered yellow fixation followed by each word (450 msec, interstimulus interval: 100 msec). The sentence-

<table>
<thead>
<tr>
<th>Sentence Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Congruous</td>
<td>During the rain storm he carried a large golf umbrella.</td>
</tr>
<tr>
<td>Concrete Incongruous</td>
<td>The twenty dairy cows are kept in red bench.</td>
</tr>
<tr>
<td>Abstract Congruous</td>
<td>Although she strove for perfection she continued to make mistakes.</td>
</tr>
<tr>
<td>Abstract Incongruous</td>
<td>Her outer expressions were completely blank and revealed no equality.</td>
</tr>
</tbody>
</table>

In the example, critical sentence-final words are underlined.

1Such increased semantic-syntactic integration demands might occur when a dominant meaning of a homograph contradicts the incongruous meaning of the entire sentence context (34), when a word is semantically associated with a previous word but the entire context dictates an incongruous meaning (35), or when an incongruous word occurs at the end of a sentence (35,36) where, during “wrap-up” of final sentence meaning, comprehenders will generally make additional attempts to make sense of a sentence. Note that, depending on the type of word that is to be integrated and its position in the sentence, the abnormally attenuated electrophysiological response in schizophrenia might manifest either as a reduction of the N400 effect (34–36) or of the later P600 effect (33), reviewed in (22).

Table 2. Demographic and Clinical Data of Healthy Control Subjects and Patients with Schizophrenia

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control Subjects (n = 16)</th>
<th>Patients (n = 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (M/F)</td>
<td>11/5</td>
<td>12/4</td>
</tr>
<tr>
<td>Race (C/AA)</td>
<td>12/4</td>
<td>13/3</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>44.4 (5.9)</td>
<td>45.9 (8.0)</td>
</tr>
<tr>
<td>Hollingshead Index</td>
<td>3.0 (1.3)</td>
<td>3.2 (1.1)</td>
</tr>
<tr>
<td>Premorbid Verbal IQ</td>
<td>116.2 (9.4)</td>
<td>105 (14.2)</td>
</tr>
<tr>
<td>CPZ Equivalent</td>
<td>—</td>
<td>395 (223)</td>
</tr>
<tr>
<td>Duration of Illness (yrs)</td>
<td>—</td>
<td>20.3 (7.7)</td>
</tr>
<tr>
<td>PANS Positive (total)</td>
<td>—</td>
<td>10.8 (6.1)</td>
</tr>
<tr>
<td>PANS Negative (total)</td>
<td>—</td>
<td>16.9 (8.4)</td>
</tr>
</tbody>
</table>

Patients and control subjects were matched closely in gender and race/ethnicity distributions. There was no significant difference between the groups in age (p = .55). The patient and control groups showed no significant difference on parental socioeconomic status (p = .5), as determined by Hollingshead Index scores (76), although patients had a lower premorbid IQ (p < .03) as assessed by the North American Adult Reading Test (77). M, Male; F, Female; C, Caucasian; AA, African-American; CPZ, chlorpromazine; PANS, Positive and Negative Syndrome Scale.

final word was followed by a response cue (‘?’), giving subjects 1850 msec (interstimulus interval: 100 msec) to respond before the next trial began. Participants decided whether each sentence made sense by pressing one of two buttons on a response box (with their left hand, with fingers counterbalanced). Sentence trials were pseudo-randomly presented amongst fixation trials (20%) in which subjects fixated on a “+” (for variable durations: 1975–17,975 msec), allowing efficient deconvolution of the hemodynamic response (45).

MRI Data Acquisition

Imaging took place on a 3-Tesla MR scanner (Siemens Trio; Siemens, Malvern, Pennsylvania). Participants underwent two high-resolution three-dimensional (3D) structural scans (spoiled gradient-recalled acquisition in the steady-state [GRASS] sequence; 128 sagittal slices, 1.33-mm thickness, repetition time: 2530 msec, echo time: 3.3 msec, flip angle: 7 degrees, bandwidth: 199 Hz, in-plane resolution: 1 × 1.33 mm), followed by T1-weighted anatomic images (30 slices, 3-mm thickness, skip 1 mm) and a T2-weighted image acquired in plane with the functional images to assist in manual registration of functional and structural data.

During functional scanning, each participant viewed sentences in one list, divided over six functional runs, each lasting 414 sec during which T2*-weighted echoplanar (EP) images were acquired (30 slices, 203 images/slice, 3-mm thickness, skip 1 mm, in-plane resolution of 3.125 mm, 30° grad axially), with a gradient echo sequence (repetition time: 2 sec; echo time: 30 msec; flip angle: 90° grad).

Behavioral Data Analysis

Percentages of errors and reaction times (RTs) to each sentence type (collapsed across items) were entered into 2 × 2 × 2 repeated-measures analyses of variance with Group (patients vs. control subjects) as a between-subject factor and Concreteness (concrete vs. abstract) and Congruity (incongruous vs. congruous) as within-subject factors. Analyses were repeated after logarithmic transformation and revealed the same pattern of findings unless otherwise noted. The α was set to .05.

MRI Data Analysis

After motion correction, each participant’s two high-resolution structural scans were averaged to increase the signal/noise. The resulting volume was reconstructed with semi-automatic procedures (FreeSurfer) to yield a model of each individual’s cortical surface (46–49). To average functional data across subjects (see following text), each subject’s cortical surface was morphed/registered to an average spherical surface representation that optimally aligned sulcal and gyral features across subjects (49,50).

Functional images were motion corrected with the Analysis of Functional NeuroImages (AFNI) algorithm (51,52). There was no significant difference in the total (vector) translation between control subjects (mean ± SD: 3.1 ± 1.1 mm; range: 1.7–5.8 mm) and patients (mean ± SD: 2.6 ± 8.8 mm; range: 1–3.8 mm, p = .15. After spatial smoothing (3D Gaussian filter: 6 mm full-width-at-half-maximal [FWHM]) and intensity normalization, the functional images were analyzed with a General Linear Model (GLM) with the FreeSurfer Functional Analysis Stream. The HRF for each condition was modeled with three components, each constituting a canonical HRF (53), convolved with a box-car of an appropriate length. The first component, modeled as a single regressor, lasted from the onset of the trial until the onset of the critical sentence-final word (5500 msec). The second component lasted from the onset of the critical sentence-final word until the onset of the “?” (550 msec) and was modeled separately for each of the four sentence types. The third component lasted from the offset of the critical word until the end of the trial (i.e., the decision: 1950 msec) and was again modeled as a single regressor. Mean offset and linear trend regressors were also included to remove low-frequency drift.

These GLM parameter estimates were resampled onto each individual’s inflated cortical surface, iteratively smoothed (equivalent to a 3D kernel of approximately 8.5 mm FWHM), and resampled onto the average cortical spherical representation.

Table 3. Behavioral Data

<table>
<thead>
<tr>
<th></th>
<th>Concrete</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control Subjects</td>
<td>Patients</td>
</tr>
<tr>
<td>Congruous % Errors</td>
<td>3.1 (2.5)</td>
<td>10.9 (8.6)</td>
</tr>
<tr>
<td>Incongruous % Errors</td>
<td>2.8 (3.3)</td>
<td>8.2 (7.7)</td>
</tr>
<tr>
<td>Congruous (RTs)</td>
<td>937.3 (152.2)</td>
<td>1130.1 (159.2)</td>
</tr>
<tr>
<td>Incongruous (RTs)</td>
<td>902.6 (182.7)</td>
<td>1105.6 (165.8)</td>
</tr>
</tbody>
</table>

Mean percentage of errors and reaction times (RTs) across the four sentence types, with SDs in parentheses. Note that an error to a congruous sentence is a false negative (classifying it as incongruous) and an error to an incongruous sentence is a false positive (classifying it as congruous).
The regression weights of the second canonical HRF component (capturing the hemodynamic response to the sentence-final word) were used to construct statistical maps with a $2 \times 2 \times 2$ mixed model with Group (patient vs. control subjects) as a between-subjects factor and Concreteness (concrete vs. abstract) and Congruity (incongruous vs. congruous) as within-subjects factors. Only “highest order” effects are reported (i.e., clusters reported as showing main effects for a particular factor are those that failed to reach significance on any interactions involving that factor), and clusters reported as showing two-way interactions failed to show three-way interactions.

To correct for multiple comparisons, clusters covering at least 300 mm2 with a corrected threshold for rejection of the null hypothesis of $p < .05$ were identified on the basis of a Monte-Carlo simulation (54). Within-group maps were generated to examine sources of effects; clusters overlapping with those showing main effects or interactions are also reported at both cluster-level significance and at a less conservative uncorrected threshold ($p < .01$).

Maps were generated with all trials. Analyses were repeated with only correctly answered trials and showed the same pattern of findings.

Results

Behavioral Data

As shown in Tables 3 and 4, both groups were more accurate and faster to judge the acceptability of the concrete than the abstract sentences, but these differences were greater in patients than control subjects (Group × Concreteness interactions). There were no overall differences in accuracy or RTs of acceptability judgments between the incongruous and congruous sentences (no main effects of Congruity), and this pattern did not differ between groups (no Group × Congruity interactions). Concreteness × Congruity interactions, however, reflected participants’ relatively more accurate and faster judgments of abstract congruous than abstract incongruous sentences, but no such differences for concrete sentences. This pattern did not differ between groups (no Group × Concreteness × Congruity interactions). As expected, patients were generally less accurate and slower than control subjects in judging all sentences (main effects of Group).

fMRI Data

Concreteness: Main Effects and Interactions. In both groups, sentence-final concrete words were associated with significantly more activity than sentence-final abstract words across bilateral orbitofrontal, inferior/ventral/temporal cortices, and occipito-parietal cortices (main effects of Concreteness, Figure 1, Table 1 in Supplement 2). Abstract sentence-final words, however, were associated with more activity within a left-lateralized superior/middle temporal and inferior frontal network (Figure 2, Table 2 in Supplement 2). Within bilateral superior/middle prefrontal cortices, there were Group × Concreteness interactions (Figure 3, Table 3 in Supplement 2). This area encompassed Brodmann Areas (BAs) 8/9/46 and is henceforth referred to as the DLPFC; here, control subjects showed relatively more activity but patients showed relatively less activity to concrete (vs. abstract) sentence-final words. These interactions remained significant when premorbid IQ (that differed slightly between the two groups, Table 2) was entered as a potentially confounding covariate and when analyses were repeated with a subset of the patients and control subjects ($n = 12$ in each group) matched on premorbid IQ.

Analyses were repeated with a two-component model in which the first component (modeled separately for the four conditions) lasted the duration of the entire sentence until the onset of the ‘?’ (Figure 12). This analysis yielded the same pattern of findings, demonstrating that these findings could be generalized to all content words of the sentences (rather than just the sentence-final word).

Congruity: Main Effects and Interactions. Across all participants, bilateral inferior frontal cortices were recruited to the incongruous relative to congruous sentence-final words (main effects of Congruity, Figure 4, Table 4 in Supplement 2). In addition, a network that included bilateral DLPFC (BA 8/9), the left inferior parietal lobule, medial frontal (including anterior cingulate) cortices, as well as the right middle temporal cortex and bilateral anterior fusiform gyri showed significant Group × Congruity interactions. In most of these regions (except for the right middle temporal and fusiform cortex), control subjects showed more activity to incongruous (vs. congruous) sentence-final words, and in all these regions, patients showed relatively less activity to incongruous (vs. congruous) sentence-final words (Figure 5, Table 5 in Supplement 2). All these interactions remained significant when premorbid IQ was entered as a covariate and when analyses were repeated with the IQ-matched subset of patients and control subjects.

There was an interaction between Congruity and Concreteness within bilateral medial superior frontal cortices, due to increases in activity to abstract incongruous (vs. congruous) sentence-final words, but no such differences in comparing

Table 4. Behavioral Data

<table>
<thead>
<tr>
<th>Condition</th>
<th>df</th>
<th>F</th>
<th>p</th>
<th>df</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group × Congruity × Concreteness</td>
<td>1,30</td>
<td>.003</td>
<td>.96</td>
<td>1,30</td>
<td>1.52</td>
<td>.22</td>
</tr>
<tr>
<td>Congruity × Concreteness</td>
<td>1,30</td>
<td>24.39</td>
<td>< .0001</td>
<td>1,30</td>
<td>13.05</td>
<td>< .001</td>
</tr>
<tr>
<td>Group × Concreteness</td>
<td>1,30</td>
<td>.96</td>
<td>.33</td>
<td>1,30</td>
<td>.11</td>
<td>.74</td>
</tr>
<tr>
<td>Group × Concreteness</td>
<td>1,30</td>
<td>8.49</td>
<td>.01</td>
<td>1,30</td>
<td>6.49</td>
<td>< .05</td>
</tr>
<tr>
<td>Concreteness</td>
<td>1,30</td>
<td>64.51</td>
<td>< .0001</td>
<td>1,30</td>
<td>28.19</td>
<td>< .001</td>
</tr>
<tr>
<td>Congruity</td>
<td>1,30</td>
<td>4.20</td>
<td>< .05</td>
<td>1,30</td>
<td>.001</td>
<td>.97</td>
</tr>
</tbody>
</table>

For reaction time data, the Group × Concreteness interaction did not remain significant when analyzed with a log transform or when correct responses only were examined.

$p < .0001$.

$p < .001$.

$p < .05$.

$p < .01$.

$p < .05$.

www.sobp.org/journal
Main Effect of Concreteness: Concrete > Abstract

Figure 1. Cortical statistical maps comparing the hemodynamic response to concrete and abstract sentence-final words, across patients and control subjects (main effects of Concreteness in the absence of any interactions involving Group). Yellow-red: more activity to concrete than to abstract words. Blue: more activity to abstract than concrete words (shown again in Figure 3). These maps were generated by contrasting the second component of the hemodynamic response to each sentence type (lasting 550 msec, from the onset of the critical sentence-final word until the onset of the "?"). They are therefore likely to reflect differences in neurocognitive activity at the point of sentence-final word as well as during decision making (see [11] and [13] for Discussion). Hemodynamic time courses show activity in patient and control groups within each of these clusters at each repetition time. On the time axes, zero refers to the onset of the trial as a whole. The critical events—the sentence-final words—began 4950 msec into the trial. All clusters circled are significant at a cluster-level \(p < 0.05 \). Cluster numbers correspond to the following regions: 1, orbitofrontal cortices; 2, inferior frontal sulcus; 3, supramarginal and postcentral gyri; 4, posterior middle/inferior temporal gyri; 5, angular and middle occipital gyri; 6, precuneus; 7, posterior cingulate gyri; 8, parahippocampal/medial fusiform gyri. See Table 1 in Supplement 2 for full details.
concrete incongruous and congruous sentence-final words, across all participants (Table 6 in Supplement 2). There were no interactions among Group, Concreteness, and Congruity.

Correlations with Clinical Features. As described in the preceding text, Group interacted independently with 1) Concreteness and 2) Congruity within bilateral superior DLPFC. Within the patient group, the difference in hemodynamic activity between concrete and abstract words within the left DLPFC inversely correlated with both total positive symptoms (Spearman’s $p: -0.6, p < .04$) and total negative symptoms (Spearman’s $p: -0.6, p < .038$) and, within the right DLPFC, inversely correlated with patients’ difficulty in abstract thinking (Spearman’s $p: -0.6, p < .02$). The difference in hemodynamic activity between incongruous and congruous sentences within the left or right DLPFC did not correlate with any symptoms. Medication dosage did not correlate with differences in hemodynamic activity.
within the DLPFC for either the concrete versus abstract or the incongruous versus congruous comparisons, p values > .5.

Discussion

We investigated the neural underpinnings of building meaning from language in schizophrenia by contrasting words within sentences that were 1) concrete versus abstract and 2) semantically incongruous versus congruous with their preceding contexts. In both of these contrasts, widespread temporal-occipital and inferior frontal cortices showed similar patterns of modulation in patients and control subjects. However, whereas control subjects recruited bilateral DLPFC (and parietal cortices) to incongruous (vs. congruous) sentences and recruited bilateral DLPFC to concrete (vs. abstract) sentences, patients showed the opposite pattern of modulation in both contrasts.

Neuroanatomical Dissociations in Effects of Concreteness

Both patient and control groups showed more activity to concrete relative to abstract sentences within a large, bilateral network distributed across ventromedial temporal, occipitoparietal, and orbitofrontal cortices. This replicates previous findings in healthy individuals using single words presented outside a sentence context (4,5,55). This network is likely to have reflected the activation of nonverbal “imagistic” representations of concrete words (3)—representations of percepts and affordances that are represented by such words (6,56). Also, both groups showed more activity to abstract relative to concrete sentence-final words within a more localized left-lateralized network, distributed across inferior frontal and lateral temporal cortices, consistent with previous findings in healthy individuals (4,5,57). This suggests that both groups accessed and retrieved verbal representations of abstract words. In both groups, the superior behavioral performance (fewer errors and shorter RTs) in judging the acceptability of concrete relative to abstract sentences might have arisen either because participants’ implicit access to imagistic representations of concrete words facilitated processing or because the increased lexico-semantic retrieval demands of abstract words slowed processing (58).

Control subjects and patients, however, showed strikingly different patterns of hemodynamic modulation within bilateral superior DLPFC. In control subjects, the increased DLPFC recruitment to concrete relative to abstract sentences is again consistent with previous studies in healthy individuals using words outside a sentence context (4,5). Its activity might have reflected the demands of integrating verbal and nonverbal representations of meaning that are activated by concrete words (see [59] for evidence for a role of the DLPFC in relational binding) as well as further elaborative semantic processing, such as imagery, of the concrete sentences (7,8). Such additional integrative and elaborative semantic activity to concrete relative to abstract words might contribute to their superior recall in memory paradigms (3) (and, indeed, activity within the DLPFC during encoding predicts the success of later recognizing words that are cued by their corresponding pictures [60]).

Figure 3. Group × Concreteness interactions: areas showing different patterns of modulation between patients and control subjects in comparing concrete and abstract sentence-final words. Hemodynamic time courses show activity in patient and control groups within each of these clusters at each repetition time (on the time axes, zero refers to the onset of the whole trial). All clusters circled are significant at a cluster-level p < .05. Circled regions are superior and middle frontal gyri (DLPFC) and left post-central gyrus. See Table 3 in Supplement 2 for full details.
In patients, we suggest that the failure to recruit the DLPFC to concrete relative to abstract sentences reflected a failure to fully integrate activated verbal and nonverbal representations. Rather, the increased activity within this region to abstract relative to concrete sentences might have reflected patients’ relative inefficiency in processing abstract concepts whose meanings are unsupported by imagistic representations. Consistent with this interpretation, patients performed worse than control subjects in judging the acceptability of the abstract relative to the concrete sentences (Group/H11003 Concreteness interactions in accuracy and, less robustly, in RTs), and within the patient group, the degree of abnormal modulation within the right DLPFC correlated with patients’ clinically assessed difficulties with abstract thinking.

Neuroanatomical Dissociations in Effects of Congruity

Both patient and control groups showed increases in activity to all incongruous relative to all congruous sentences within bilateral inferior frontal cortices. Such increases are likely to have reflected increased semantic memory-based processing (i.e., participants’ increased and prolonged efforts to retrieve and match stored semantic material with the semantic relationships between incoming content words within incongruous relative to congruous sentences) (11–13,61,62).

Control subjects also showed increased recruitment of bilateral superior DLPFC, the left inferior parietal lobule, bilateral medial frontal, and medial parietal cortices to the incongruous relative to the congruous sentence-final words—a network that we have previously reported as more active to semantic anomalies when semantic-syntactic integration demands are particularly high (13). Although the functional roles of each of these regions are debated (see [13] for a discussion of alternative hypotheses), additional recruitment of this network in the present study can be broadly interpreted as reflecting the increased semantic-syntactic integration and reanalysis demands required to integrate sentence-final incongruities.

Patients failed to recruit this DLPFC/medial frontal/parietal network (in the RT data, there was no such main effect of Congruity. This might be because, to reduce the neural effects of the motor response, participants were asked to delay their button presses until the '?' cue appeared after the sentences. Thus, potential RT differences between the incongruous and congruous sentences at the point of the sentence-final word might not have been detected. There was, however, an interaction between Congruity and Concreteness due to longer RTs to incongruous than congruous abstract sentences. Abstract sentences were generally harder to comprehend than concrete sentences (reflected by the main effect of Concreteness), and participants’ acceptability decisions at the point of incongruous abstract sentence-final words were therefore more likely to have occurred after the '?' cue appeared.)

Activity within the left inferior frontal cortex is also likely to mediate semantic-syntactic integration processes in both congruous and incongruous sentences; our assumption here is that more superior frontal and parietal cortices are additionally engaged when integration demands are particularly high on semantically anomalous sentence-final words.

Figure 4. Cortical statistical maps comparing the hemodynamic response to incongruous and congruous sentence-final words, across patients and control subjects (main effects of Congruity in the absence of any interactions involving Group). Hemodynamic time courses show activity in patient and control groups within each of these clusters at each repetition time (on the time axes, zero refers to the onset of the whole trial). All clusters circled are significant at a cluster-level p < .05. Circled regions are inferior frontal gyri. See Table 4 in Supplement 2 for full details.
network to the incongruous sentence-final words (indeed, in some of these regions, activity fell below that to the congruous sentences). We suggest that this failure reflects an impairment in patients' engagement of additional integrative and reanalysis processes to the sentence-final incongruities—an interpretation that is consistent with ERP studies reporting a normal modulation of waveforms in schizophrenia to semantic incongruities that are detectable through semantic memory-based processing (33,63,64), but reduced modulation of components when there are additional demands to integrate semantic and syntactic information (33–36,65) (and see footnote 1). This interpretation is also consistent with findings of an fMRI study that reported abnormally reduced activity within the DLPFC as patients produced syntactically more complex (vs. less complex) sentences (66)—a situation where demands for integrating word meaning and syntactic structure are again increased.

Patients were generally successful in judging the incongruous sentences as unacceptable and the congruous sentences as acceptable. We suggest that their relatively intact behavioral performance was driven by normal semantic memory-based
retention and matching processes, mediated within inferior frontal cortices; sentence-final words of the incongruous sentences were generally less semantically related to their preceding content words than those of the congruous sentences, explaining why semantic-memory-based mechanisms would lead to successful behavioral judgments. Indeed, there was some indirect evidence that implicit semantic memory-based activity within temporal cortices might have even been increased in patients: patients showed abnormally increased activity within right-sided middle/inferior temporal and fusiform regions to the congruous relative to incongruous sentences, consistent with previous studies demonstrating inappropriate recruitment of temporal cortices to indirect and predictable semantic relationships (29,30). This might have reflected some hyperactivity to semantically associated congruous sentence-final words. This interpretation, however, remains speculative, and future experiments directly manipulating semantic association within sentences should explore this hypothesis further.

Open Questions and Conclusions

An open question is whether patients’ abnormal pattern of activity in both contrasts (concrete vs. abstract and incongruous vs. congruous sentences) reflected a single neurocognitive deficit. The absence of a three-way interaction among Group, Concreteness, and Congruity argues against this hypothesis. Moreover, whereas reduced activity to concrete (vs. abstract) words within the left DLPFC correlated with positive and negative symptom severity (although not medication dosage) within the patient group, this was not true of the contrast between incongruous and congruous sentences, possibly because semantic-syntactic integration and reanalysis were relatively less dependent on this single region.

Nonetheless, it is still possible that an abnormality in a more basic cognitive operation contributed independently to the abnormal modulation of activity seen in each contrast. One obvious candidate for such an operation is the maintenance and/or manipulation of information within working memory—a process long known to be impaired (67), correlated with language comprehension deficits (68,69), and associated with abnormal DLPFC modulation (37–39,70,71) in schizophrenia. There is evidence that working memory operations subserved by the DLPFC play a role in relational binding between activated representations of single concepts (72), providing a mechanism by which a working memory deficit in schizophrenia could contribute the abnormal DLPFC modulation to concrete (vs. abstract) words. And, although there has been debate as to whether integration processes during sentence comprehension are language-specific (73), recent evidence in healthy individuals suggests that they might engage at least some domain-general working memory mechanisms (74). Future studies should determine whether DLPFC dysfunction in schizophrenia, indexed with general working memory paradigms, predicts DLPFC dysfunction during the construction of higher-order meaning.

In conclusion, as meaning is built from language in schizophrenia, large networks mediating the retrieval and activation of verbal and imagistic representations are spared (and some might even show increased activity in response to semantically associated material). However, when demands for integrating multiple different activated representations together are increased, patients fail to recruit the DLPFC (and sometimes also medial frontal and lateral/medial parietal cortices). In healthy individuals, semantic memory- and integrative mechanisms both contribute to language processing and are highly interactive (10). We suggest that abnormalities in schizophrenia are best conceived of as a disturbance in the balance between these mechanisms. As meaning is built from language, patients might be relatively more dependent on semantic memory-based processes at the expense of integrative processes (10). This imbalance might contribute to intrusions of internal semantic representations at the expense of forming accurate representations of meaning of the external world in schizophrenia (75).

This research was supported by the National Institute of Mental Health (R01 MH071635) and the Institute for Mental Illness and Neuroscience Discovery (MIND). Gina R. Kuperberg was also supported by a National Alliance for Research on Schizophrenia And Depression (NARSAD) (with the Sidney Baer Trust) and a Claflin Distinguished Scholars Award from Massachusetts General Hospital. We thank Jordana Cotton, Karin Blais, and Alexis Choi for their help with data acquisition; Christine Portal, Kaila Norman, and Daphne Holt for help with patient recruitment and assessment; Arim Choi for help with analysis; and Tatiana Sitnikova, Mante Nieuwland, and Tali Ditman for their helpful comments on the manuscript.

Dr. Goff has received honoraria or research support over the past year from Pfizer, Cephalon, Xenonpo, Dainippon Sumitomo, Janssen Pharmaceuticals, Solvay/Wyeth, Eli Lilly, Bristol-Myers Squibb, Versusmed, Letters and Science, Primedia, SG Coven, Vista Research, Organon, Proteus, the National Institutes of Health, NARSAD, Sidney Baer Foundation, Department of Energy (DOE), and Vanda Pharmaceuticals. All other authors reported no biomedical financial interests or potential conflicts of interest.

Supplementary material cited in this article is available online.

www.sobp.org/journal