""" ============================== Generate simulated evoked data ============================== """ # Author: Daniel Strohmeier # Alexandre Gramfort # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.datasets import sample from mne.time_frequency import fit_iir_model_raw from mne.viz import plot_sparse_source_estimates from mne.simulation import simulate_sparse_stc, simulate_evoked print(__doc__) ############################################################################### # Load real data as templates data_path = sample.data_path() raw = mne.io.read_raw_fif(data_path + '/MEG/sample/sample_audvis_raw.fif') proj = mne.read_proj(data_path + '/MEG/sample/sample_audvis_ecg-proj.fif') raw.info['projs'] += proj raw.info['bads'] = ['MEG 2443', 'EEG 053'] # mark bad channels fwd_fname = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif' ave_fname = data_path + '/MEG/sample/sample_audvis-no-filter-ave.fif' cov_fname = data_path + '/MEG/sample/sample_audvis-cov.fif' fwd = mne.read_forward_solution(fwd_fname, force_fixed=True, surf_ori=True) fwd = mne.pick_types_forward(fwd, meg=True, eeg=True, exclude=raw.info['bads']) cov = mne.read_cov(cov_fname) info = mne.io.read_info(ave_fname) label_names = ['Aud-lh', 'Aud-rh'] labels = [mne.read_label(data_path + '/MEG/sample/labels/%s.label' % ln) for ln in label_names] ############################################################################### # Generate source time courses from 2 dipoles and the correspond evoked data times = np.arange(300, dtype=np.float) / raw.info['sfreq'] - 0.1 rng = np.random.RandomState(42) def data_fun(times): """Function to generate random source time courses""" return (1e-9 * np.sin(30. * times) * np.exp(- (times - 0.15 + 0.05 * rng.randn(1)) ** 2 / 0.01)) stc = simulate_sparse_stc(fwd['src'], n_dipoles=2, times=times, random_state=42, labels=labels, data_fun=data_fun) ############################################################################### # Generate noisy evoked data picks = mne.pick_types(raw.info, meg=True, exclude='bads') iir_filter = fit_iir_model_raw(raw, order=5, picks=picks, tmin=60, tmax=180)[1] snr = 6. # dB evoked = simulate_evoked(fwd, stc, info, cov, snr, iir_filter=iir_filter) ############################################################################### # Plot plot_sparse_source_estimates(fwd['src'], stc, bgcolor=(1, 1, 1), opacity=0.5, high_resolution=True) plt.figure() plt.psd(evoked.data[0]) evoked.plot()