""" =================================================== Compute induced power in the source space with dSPM =================================================== Returns STC files ie source estimates of induced power for different bands in the source space. The inverse method is linear based on dSPM inverse operator. """ # Authors: Alexandre Gramfort # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample from mne.minimum_norm import read_inverse_operator, source_band_induced_power print(__doc__) ############################################################################### # Set parameters data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' tmin, tmax, event_id = -0.2, 0.5, 1 # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') inverse_operator = read_inverse_operator(fname_inv) include = [] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # picks MEG gradiometers picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True, stim=False, include=include, exclude='bads') # Load condition 1 event_id = 1 events = events[:10] # take 10 events to keep the computation time low # Use linear detrend to reduce any edge artifacts epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6), preload=True, detrend=1) # Compute a source estimate per frequency band bands = dict(alpha=[9, 11], beta=[18, 22]) stcs = source_band_induced_power(epochs, inverse_operator, bands, n_cycles=2, use_fft=False, n_jobs=1) for b, stc in stcs.items(): stc.save('induced_power_%s' % b) ############################################################################### # plot mean power plt.plot(stcs['alpha'].times, stcs['alpha'].data.mean(axis=0), label='Alpha') plt.plot(stcs['beta'].times, stcs['beta'].data.mean(axis=0), label='Beta') plt.xlabel('Time (ms)') plt.ylabel('Power') plt.legend() plt.title('Mean source induced power') plt.show()