""" ===================================== Time-frequency beamforming using DICS ===================================== Compute DICS source power [1]_ in a grid of time-frequency windows and display results. References ---------- .. [1] Dalal et al. Five-dimensional neuroimaging: Localization of the time-frequency dynamics of cortical activity. NeuroImage (2008) vol. 40 (4) pp. 1686-1700 """ # Author: Roman Goj # # License: BSD (3-clause) import mne from mne.event import make_fixed_length_events from mne.datasets import sample from mne.time_frequency import csd_epochs from mne.beamformer import tf_dics from mne.viz import plot_source_spectrogram print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' noise_fname = data_path + '/MEG/sample/ernoise_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif' fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif' subjects_dir = data_path + '/subjects' label_name = 'Aud-lh' fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name ############################################################################### # Read raw data raw = mne.io.read_raw_fif(raw_fname, preload=True) raw.info['bads'] = ['MEG 2443'] # 1 bad MEG channel # Pick a selection of magnetometer channels. A subset of all channels was used # to speed up the example. For a solution based on all MEG channels use # meg=True, selection=None and add mag=4e-12 to the reject dictionary. left_temporal_channels = mne.read_selection('Left-temporal') picks = mne.pick_types(raw.info, meg='mag', eeg=False, eog=False, stim=False, exclude='bads', selection=left_temporal_channels) raw.pick_channels([raw.ch_names[pick] for pick in picks]) reject = dict(mag=4e-12) # Re-normalize our empty-room projectors, which should be fine after # subselection raw.info.normalize_proj() # Setting time windows. Note that tmin and tmax are set so that time-frequency # beamforming will be performed for a wider range of time points than will # later be displayed on the final spectrogram. This ensures that all time bins # displayed represent an average of an equal number of time windows. tmin, tmax, tstep = -0.55, 0.75, 0.05 # s tmin_plot, tmax_plot = -0.3, 0.5 # s # Read epochs event_id = 1 events = mne.read_events(event_fname) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, baseline=None, preload=True, proj=True, reject=reject) # Read empty room noise raw data raw_noise = mne.io.read_raw_fif(noise_fname, preload=True) raw_noise.info['bads'] = ['MEG 2443'] # 1 bad MEG channel raw_noise.pick_channels([raw_noise.ch_names[pick] for pick in picks]) raw_noise.info.normalize_proj() # Create noise epochs and make sure the number of noise epochs corresponds to # the number of data epochs events_noise = make_fixed_length_events(raw_noise, event_id) epochs_noise = mne.Epochs(raw_noise, events_noise, event_id, tmin_plot, tmax_plot, baseline=None, preload=True, proj=True, reject=reject) epochs_noise.info.normalize_proj() epochs_noise.apply_proj() # then make sure the number of epochs is the same epochs_noise = epochs_noise[:len(epochs.events)] # Read forward operator forward = mne.read_forward_solution(fname_fwd, surf_ori=True) # Read label label = mne.read_label(fname_label) ############################################################################### # Time-frequency beamforming based on DICS # Setting frequency bins as in Dalal et al. 2008 freq_bins = [(4, 12), (12, 30), (30, 55), (65, 300)] # Hz win_lengths = [0.3, 0.2, 0.15, 0.1] # s # Then set FFTs length for each frequency range. # Should be a power of 2 to be faster. n_ffts = [256, 128, 128, 128] # Subtract evoked response prior to computation? subtract_evoked = False # Calculating noise cross-spectral density from empty room noise for each # frequency bin and the corresponding time window length. To calculate noise # from the baseline period in the data, change epochs_noise to epochs noise_csds = [] for freq_bin, win_length, n_fft in zip(freq_bins, win_lengths, n_ffts): noise_csd = csd_epochs(epochs_noise, mode='fourier', fmin=freq_bin[0], fmax=freq_bin[1], fsum=True, tmin=-win_length, tmax=0, n_fft=n_fft) noise_csds.append(noise_csd) # Computing DICS solutions for time-frequency windows in a label in source # space for faster computation, use label=None for full solution stcs = tf_dics(epochs, forward, noise_csds, tmin, tmax, tstep, win_lengths, freq_bins=freq_bins, subtract_evoked=subtract_evoked, n_ffts=n_ffts, reg=0.001, label=label) # Plotting source spectrogram for source with maximum activity # Note that tmin and tmax are set to display a time range that is smaller than # the one for which beamforming estimates were calculated. This ensures that # all time bins shown are a result of smoothing across an identical number of # time windows. plot_source_spectrogram(stcs, freq_bins, tmin=tmin_plot, tmax=tmax_plot, source_index=None, colorbar=True)