""" ================ XDAWN Denoising ================ XDAWN filters are trained from epochs, signal is projected in the sources space and then projected back in the sensor space using only the first two XDAWN components. The process is similar to an ICA, but is supervised in order to maximize the signal to signal + noise ratio of the evoked response. .. warning:: As this denoising method exploits the known events to maximize SNR of the contrast between conditions it can lead to overfitting. To avoid a statistical analysis problem you should split epochs used in fit with the ones used in apply method. References ---------- [1] Rivet, B., Souloumiac, A., Attina, V., & Gibert, G. (2009). xDAWN algorithm to enhance evoked potentials: application to brain-computer interface. Biomedical Engineering, IEEE Transactions on, 56(8), 2035-2043. [2] Rivet, B., Cecotti, H., Souloumiac, A., Maby, E., & Mattout, J. (2011, August). Theoretical analysis of xDAWN algorithm: application to an efficient sensor selection in a P300 BCI. In Signal Processing Conference, 2011 19th European (pp. 1382-1386). IEEE. """ # Authors: Alexandre Barachant # # License: BSD (3-clause) from mne import (io, compute_raw_covariance, read_events, pick_types, Epochs) from mne.datasets import sample from mne.preprocessing import Xdawn from mne.viz import plot_epochs_image print(__doc__) data_path = sample.data_path() ############################################################################### # Set parameters and read data raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' tmin, tmax = -0.1, 0.3 event_id = dict(vis_r=4) # Setup for reading the raw data raw = io.read_raw_fif(raw_fname, preload=True) raw.filter(1, 20) # replace baselining with high-pass events = read_events(event_fname) raw.info['bads'] = ['MEG 2443'] # set bad channels picks = pick_types(raw.info, meg=True, eeg=False, stim=False, eog=False, exclude='bads') # Epoching epochs = Epochs(raw, events, event_id, tmin, tmax, proj=False, picks=picks, baseline=None, preload=True, verbose=False) # Plot image epoch before xdawn plot_epochs_image(epochs['vis_r'], picks=[230], vmin=-500, vmax=500) # Estimates signal covariance signal_cov = compute_raw_covariance(raw, picks=picks) # Xdawn instance xd = Xdawn(n_components=2, signal_cov=signal_cov) # Fit xdawn xd.fit(epochs) # Denoise epochs epochs_denoised = xd.apply(epochs) # Plot image epoch after Xdawn plot_epochs_image(epochs_denoised['vis_r'], picks=[230], vmin=-500, vmax=500)