A novel method for quantifying scanner instability in fMRI

Vertical Tabs

Magn Reson Med
2011 Apr
65
4
1053-61
10.1002/mrm.22691
Epub Date: 
Tuesday, November 30, 2010
Journal Articles
PubMed ID: 
21413069

A method was developed to quantify the effect of scanner instability on functional MRI data by comparing the instability noise to endogenous noise present when scanning a human. The instability noise was computed from agar phantom data collected with two flip angles, allowing for a separation of the instability from the background noise. This method was used on human data collected at four 3 T scanners, allowing the physiological noise level to be extracted from the data. In a "well-operating" scanner, the instability noise is generally less than 10% of physiological noise in white matter and only about 2% of physiological noise in cortex. This indicates that instability in a well-operating scanner adds very little noise to functional MRI results. This new method allows researchers to make informed decisions about the maximum instability level a scanner can have before it is taken off line for maintenance or rejected from a multisite consortium. This method also provides information about the background noise, which is generally larger in magnitude than the instability noise.

Year: 
2011