In vivo and ex vivo applications of gold nanoparticles for biomedical SERS imagingi

Vertical Tabs

Am J Nucl Med Mol Imaging
2012
2
2
232-41
Epub Date: 
Wednesday, March 28, 2012
Journal Articles
PubMed ID: 
23133814

Surface enhanced Raman scattering (SERS) is a signal-increasing phenomenon that occurs whenever Raman scattering on a metal surface is enhanced many orders of magnitude. Recently SERS has received considerable attention due to its ultrasensitive multiplex imaging capability with strong photostability. It provides rich molecular information on any Raman molecule adsorbed to rough metal surfaces. The signal enhancement is so remarkable that identification of a single molecule is possible. SERS has become a genuine molecular imaging technique. Gold nanoparticles, encoded with Raman reporters, provide a SERS signal and have been used as imaging probes, often referred to as SERS nanoparticles. They have been used for molecular imaging in vivo, ex vivo and in vitro. Detection of picomolar concentrations of target molecules has been achieved by functionalizing the nanoparticles with target recognition ligands. This review focuses on recent achievements in utilizing SERS nanoparticles for in vivo molecular imaging. In the near future, SERS technology may allow detection of disease markers at the single cell level.

Year: 
2012