Volumetric navigators for real-time motion correction in diffusion tensor imaging

Vertical Tabs

Magn Reson Med
2012 Oct
68
4
1097-108
10.1002/mrm.23314
Epub Date: 
Friday, January 13, 2012
Journal Articles
PubMed ID: 
22246720

Prospective motion correction methods using an optical system, diffusion-weighted prospective acquisition correction, or a free induction decay navigator have recently been applied to correct for motion in diffusion tensor imaging. These methods have some limitations and drawbacks. This article describes a novel technique using a three-dimensional-echo planar imaging navigator, of which the contrast is independent of the b-value, to perform prospective motion correction in diffusion weighted images, without having to reacquire volumes during which motion occurred, unless motion exceeded some preset thresholds. Water phantom and human brain data were acquired using the standard and navigated diffusion sequences, and the mean and whole brain histogram of the fractional anisotropy and mean diffusivity were analyzed. Our results show that adding the navigator does not influence the diffusion sequence. With head motion, the whole brain histogram-fractional anisotropy shows a shift toward lower anisotropy with a significant decrease in both the mean fractional anisotropy and the fractional anisotropy histogram peak location (P

Year: 
2012