White matter signal abnormality quality differentiates mild cognitive impairment that converts to Alzheimer's disease from nonconverters

Vertical Tabs

Neurobiol Aging
2015 Sep
36
9
2447-57
10.1016/j.neurobiolaging.2015.05.011
Epub Date: 
Thursday, May 28, 2015
Journal Articles
PubMed ID: 
26095760

The objective of this study was to assess how longitudinal change in the quantity and quality of white matter signal abnormalities (WMSAs) contributes to the progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD). The Mahalanobis distance of WMSA from normal-appearing white matter using T1-, T2-, and proton density-weighted MRI was defined as a quality measure for WMSA. Cross-sectional analysis of WMSA volume in 104 cognitively healthy older adults, 116 individuals with MCI who converted to AD within 3 years (mild cognitive impairment converter [MCI-C]), 115 individuals with MCI that did not convert in that time (mild cognitive impairment nonconverter [MCI-NC]), and 124 individuals with AD from the Alzheimer's Disease Neuroimaging Initiative revealed that WMSA volume was substantially greater in AD relative to the other groups but did not differ between MCI-NC and MCI-C. Longitudinally, MCI-C exhibited faster WMSA quality progression but not volume compared with matched MCI-NC beginning 18 months before MCI-C conversion to AD. The strongest difference in rate of change was seen in the time period starting 6 months before MCI-C conversion to AD and ending 6 months after conversion (p

Year: 
2015