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Statistical Group Comparison of Diffusion Tensors via
Multivariate Hypothesis Testing

Brandon Whitcher,1∗ Jonathan J. Wisco,2 Nouchine Hadjikhani,2 and David S. Tuch2†

Diffusion tensor imaging (DTI) provides a powerful tool for iden-
tifying white matter (WM) alterations in clinical populations. The
prevalent method for group-level analysis of DTI is statistical
comparison of the diffusion tensor fractional anisotropy (FA)
metric. The FA metric, however, does not capture the full orienta-
tional information contained in the diffusion tensor. For example,
the FA test is incapable of detecting group-level differences in
diffusion orientation when the level of anisotropy is unaffected.
Here, we apply multivariate hypothesis testing procedures to the
elements of the diffusion tensor as an alternative to univariate
testing using FA. Both parametric and nonparametric tests are
proposed with each choice carrying specific assumptions about
the diffusion tensor model. Of particular interest is the Cramér
test, which works on Euclidean interpoint distances and can be
readily adapted to a specific non-Euclidean framework by apply-
ing matrix logarithms to the diffusion tensors. Using Monte Carlo
simulations, we show that multivariate tests can detect diffu-
sion tensor principal eigenvector differences of 15 degrees with
up to 80–90% power under typical design conditions. We also
show that some multivariate tests are more sensitive to FA dif-
ferences, when compared to a univariate test on FA, even if there
is no principal eigenvector difference. The Cramér test, using
the Euclidean interpoint distances, performed best under both
simulation scenarios. When applying the Cramér test of the dif-
fusion tensor in a clinical population with a history of migraine,
a 169% increase was observed in the volume of a significant
cluster compared to the univariate FA test. Magn Reson Med
57:1065–1074, 2007. © 2007 Wiley-Liss, Inc.
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INTRODUCTION

Diffusion tensor imaging (DTI) has identified white matter
alterations in a wide number of neurological and psychi-
atric conditions including Alzheimer’s disease, Parkinson’s
disease, schizophrenia, neurological complications of HIV
infection, autism, multiple sclerosis, and numerous other
conditions (1,2). DTI studies in clinical populations have
thus far focused predominately on diffusion anisotropy; yet
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DTI provides information on both the degree and direction
of the diffusion anisotropy in white matter (WM). Statis-
tical hypothesis testing on the diffusion tensor, instead of
scalar summaries derived from it, could provide greater sta-
tistical power, since there are more measurements available
in the full tensor. Further, hypothesis testing on the ten-
sor could detect pathologies that alter diffusion orientation
but leave diffusion anisotropy preserved. This capability
may be particularly effective in neurodevelopmental dis-
orders characterized by aberrant WM patterning. In areas
of fiber crossing, FA may be reduced if one of the tracts is
undergoing demyelination. However, a decreased FA could
also be observed if one of the tracts is more myelinated
in the studied population than in controls. For example,
intensive training of a motor skill such as piano play-
ing has been reported to decrease FA values in the motor
tracts (3).

The standard statistical tests for tensor-valued measure-
ments impose distributional assumptions on the tensor,
such as the Wishart distribution. Schwartzman et al. (4)
described a parametric test based on the bipolar Watson
distribution (5), yet this test is parametric and only oper-
ates on the mean diffusion direction and not the complete
tensor. Multivariate hypothesis testing has been applied
to a combination of scalar summaries derived from the
diffusion tensor (6), where both the apparent diffusion coef-
ficient (ADC) and fractional anisotropy (FA) were tested as
a bivariate vector using the Hotelling T2 test.

This article describes several tests, both parametric and
nonparametric, for statistical group comparison of the esti-
mated diffusion tensors. The selection of specific hypoth-
esis testing procedures is not exhaustive and represents
a selection of tests that are both statistically appropriate
and relatively straightforward to implement. If one con-
siders only the unique elements of the diffusion tensor
as a six-dimensional vector, then the Hotelling T2 test is
available for making group comparisons. The Hotelling T2

test assumes multivariate normality of the six-dimensional
vector and identical group covariance matrices. This is
not unreasonable given previous results based on Monte
Carlo simulations (7) and statistical theory (8). One non-
parametric alternative to the Hotelling T2 test is the mul-
tivariate permutation test (9), where the only assumption
is exchangeability between the multivariate vectors. A sec-
ond nonparametric alternative is the Cramér test based on
Euclidean interpoint distances between the vectors (10). No
distributional assumptions are required for the Cramér test
and it has been shown to perform well against both changes
in scale and location between groups for a wide variety of
probability distribution functions.

Applying statistical methodology to the multivariate vec-
tor derived from the diffusion tensor ignores key attributes
of the tensor, such as positive definiteness. Recently, non-
Euclidean metrics have been suggested and applied in
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registration and filtering of DTI data (11,12). In our case
of multivariate hypothesis testing, the Cramér test works
on Euclidean interpoint distances between the multivariate
vectors and therefore it is well suited to work with the so-
called Log-Euclidean metrics (13). Log-Euclidean metrics
allow standard Euclidean computations to take place in the
domain of matrix logarithms while retaining key properties
of affine-invariant Riemannian metrics.

Monte Carlo simulations show that multivariate testing
procedures can detect (at roughly 80% power) principal
eigenvector differences of 15 degrees and FA differences of
0.10–0.15 under experimentally relevant SNR conditions.
In DTI data from a migraine study, the Cramér test using
a Euclidean metric provided substantially greater statisti-
cal power than the univariate FA test. Additionally, the
Cramér test detected WM alterations that were not detected
by the univariate test on FA. Statistical group comparison
of tensors holds substantial promise to improve the statis-
tical and anatomical sensitivity of DTI studies in clinical
populations.

THEORY

DT-MRI data is inherently multivariate; i.e., there are sev-
eral measurements at each physical location (voxel) in the
scan. Depending on the scanning protocol, at least six and
up to several hundred gradient directions may be acquired
in a single session. Physical models have been used to
reduce the complexity of the observed data. For example,
the diffusion tensor is one method of mapping d ≥ 6 gra-
dient directions to a second-order tensor with six unique
elements related to the Gaussian model of diffusion in
three dimensions (14). Even after this initial mapping, sev-
eral rotationally invariant parameters have been derived
from the diffusion tensor D (15,16). It has been argued that
these parameters do not depend on the applied magnetic
field gradient coordinate system and can be reproduced
in successive examinations (given the same acquisition
parameters). Fractional anisotropy or FA (15) is the most
popular scalar invariant measure of the diffusion tensor.
We introduce several hypothesis testing techniques that
may be applied to a scalar summary of the diffusion tensor
or to the diffusion tensor in its entirety. Both paramet-
ric and nonparametric testing schemes are provided, and
are appropriate depending on what is assumed about the
statistic of interest.

Univariate Hypothesis Testing

Group comparisons using FA may be performed using well-
known univariate two-sample hypothesis tests. Although
widely used and familiar to most researchers, we will
introduce this parametric test to establish necessary nota-
tion that will be recycled in subsequent sections. Let
D1 = D1,1, . . . , D1,n1 and D2 = D2,1, . . . , D2,n2 be the esti-
mated diffusion tensors from the two groups of subjects.
Then FA1 = FA1,1, . . . , FA1,n1 and FA2 = FA2,1, . . . , FA2,n2

denote the estimated values of fractional anisotropy from
the corresponding diffusion tensors. If one assumes that
FA from both groups of subjects follows a Normal prob-
ability density function (PDF), then the two-sample t-test
may be used to detect differences in FA between the two

groups at a voxel-by-voxel level. The formal statement of
the hypothesis test is H0 : FA1 − FA2 = 0 versus H1 :
FA1 − FA2 �= 0. The test statistic depends on the average
difference in FA between the two groups normalized by the
pooled standard deviation of the Normal PDF; i.e.,

Un1,n2 = (n1 + n2 − 2)1/2(FA1 − FA2)(
n−1

1 + n−1
2

)1/2(S2
1 + S2

2

)1/2 , [1]

where FA1, FA2 are the average within-group FA at a par-
ticular voxel and S2

1, S2
2 are the sums of squares of FA.

The test statistic Un1,n2 will have a t distribution with
n1 + n2 − 2 degrees of freedom. Two remarks about this
testing scheme come to mind. First, the assumption of
Gaussianity may seem odd given that there is Rician noise
on the diffusion-weighted images, the log transform is used
in the model fitting procedure and FA is a nonlinear com-
bination of the diffusion tensor elements. By assuming the
signal intensities from the data acquisition are multivari-
ate Normal, it has been shown that FA is asymptotically
Normal as the number of diffusion gradients goes to infin-
ity (17). If one does not want to make such an assumption,
it may be beneficial to investigate alternative hypothesis
tests with weaker assumptions on the diffusion-weighted
images; e.g., permutation, bootstrap or rank-based non-
parametric tests. Second, the two-sample t-test will only
detect group differences that manifest themselves in the
scalar quantity FA and ignores potential information in the
diffusion tensor.

If we make the assumption that the underlying distribu-
tion of errors about FA is symmetric, then a semiparametric
alternative to the t-test is available by rearranging the labels
of the observed FA values in a permutation framework
(9,18). The null and alternative hypotheses may now be ex-

pressed via H0 : FA1
d= FA2 and H1 : FA1

d�= FA2, respec-
tively, where d= denotes “equal in distribution”. Let π (FA)
be a permutation of the concatenated vector FA =
[FA1, FA2], where π1(FA) is the vector of FA values that are
associated with the first n1 labels (group one) and π2(FA)
is associated with the subsequent n2 labels (group two).
A suitable test statistic is given by the difference between
within-permutation-group averages U∗

1,2 = π1(FA)−π2(FA).
Thus, the observed value is U1,2 = FA1 − FA2. Standard-
ization is not required because the test statistic U∗

1,2 is
permutationally equivalent to its standardized form. The
permutation sample space is the set of all permutations of
the observed FA, with a cardinality of n! = (n1 + n2)!. For
reasonably large n, the permutation sample space cannot be
examined at all possible points and a random sample from
the permutation space must be obtained. This is achieved
by selecting B permutation sets π (FA) and calculating the
estimated p-value via ξ̂ = (1 + #{|U∗

1,2| ≥ |U1,2|})/(B + 1) for
the two-sided alternative hypothesis, where #{A} denotes
the cardinality of the set A.

Multivariate Hypothesis Testing

One may argue that FA is not the most effective scalar sum-
mary of diffusion anisotropy in the human brain. In fact,
no univariate measure may provide the best level of sensi-
tivity to detecting subtle differences in WM microstructure.
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Hence, we have decided to test all the unique elements that
make up the diffusion tensor as a multivariate vector. Let

d = [Dx,xDy ,y Dz,zDx,y Dx,zDy ,z]T [2]

denote the six-dimensional vector of elements from the
diffusion tensor D, and let d1 = d1,1, . . . , d1,n1 and d2 =
d2,1, . . . , d2,n2 be the random six-dimensional vectors from
the two groups, respectively. The hypothesis test may now
be stated as H0 : d1 − d2 = 0 versus H1 : d1 − d2 �=
0. In addition, if d1 − d2 �= 0, then which component
means are different? Assuming the observations come from
two multivariate Normal distributions with a difference in
means of 0 and the same covariance matrix, the two-sample
T2-statistic is given by

T2 = [d1 − d2]T
[(

1
n1

+ 1
n2

)
Spooled

]−1

[d1 − d2], [3]

where d1 and d2 are the average within-group diffusion
tensor elements at a particular voxel and Spooled is the
pooled variance. The T2-statistic will have a normalized
F distribution given by

6(n1 + n2 − 2)
n1 + n2 − 7

F6,n1+n2−7. [4]

When the assumption of multivariate normality is not rea-
sonable, hypothesis testing based on permutations offers
one possible solution. Building on the notation already
introduced for testing via rearrangements in the previous
section, the null hypothesis of equality in multivariate
distributions of the vector representation of the diffusion
tensor is given by

H0 : {d1
d= d2} =

{
6⋂

i=1

H0,i

}
, [5]

where each univariate null hypothesis H0,i tests of equality
between the univariate distributions for the ith diffusion
tensor element. Thus, H0 is the global null hypothesis test
and the global alternative may be represented by the union
across all sub-alternatives

H1 :

{
6⋃

i=1

H1,i

}
. [6]

Basically, multivariate permutation testing performs all
partial tests (i.e., tests on each element of the observed vec-
tors) and combines P-values from the partial tests using
a combining function. Several functions are available from
the literature (9), and we use the Fisher omnibus combining
function

C(ξ1, . . . , ξ6) = −2
6∑

i=1

log(ξi), [7]

where ξi are the marginal P-values. Implementation of the
multivariate permutation test involves two stages. The first
stage involves applying B rearrangements to the multivari-
ate observations and computing the marginal P-values ξ̂i =
(1 + #{|U∗

i | ≥ |Ui |})/(B + 1), for i = 1, . . . , 6. The ξ̂i may be
calculated using the procedure outlined for the univariate

permutation test by replacing FA with the diffusion tensor
elements D1, . . . , D6 and utilizing the same permutation of
labels across the elements in the vector; i.e., π (D1) = · · · =
π (D6) for every rearrangement r. The combined observed
value of the second-order test Û = C(ξ̂1, . . . , ξ̂6) is a function
of the marginal P-values via the combining function. Every
test statistic derived from the rth rearrangement of the
labels (r = 1, . . . , B) in the first stage is then compared with
the permutation sample to provide the combined value
of vector statistics given by Û∗

r = C(ξ̂∗
1,r , . . . , ξ̂∗

6,r ), where
ξ̂∗

i,r = (1 + #{|U∗
i,r | ≥ |Ui |})/(B + 1), i = 1, . . . , 6, r = 1, . . . , B.

The combined P-value for the test Û is then estimated via
ξ̄ = (1 + #{|Û∗

r | ≥ |Û |})/(B + 1).

Testing Interpoint Distances

Recently, a new multivariate two-sample test was proposed
(10). The test statistic is the difference of the sum of all
Euclidean interpoint distances between the random vari-
ables from the two different samples and one-half of the two
corresponding sums of distances of the variables within the
same sample. The random vectors d1 are assumed to be
identically distributed with distribution function G1 and
the random vectors d2 are assumed to be identically dis-
tributed with distribution function G2 (univariate testing
is also valid). The hypothesis to be tested is now H0 :
d1

d= d2 ⇔ H0 : G1 = G2 versus the general alternative
H1 : d1

d�= d2 ⇔ H1 : G1 �= G2 by using the test statistic

Tn1,n2 = n1n2

n1 + n2

 1
n1n2

n1∑
i=1

n2∑
j=1

‖d1,i − d2,j‖

− 1
2n2

1

n1∑
i=1

n1∑
j=1

‖d1,i − d1,j‖

− 1
2n2

2

n2∑
i=1

n2∑
j=1

‖d2,i − d2,j‖
 , [8]

where ‖x‖ denotes the Euclidean norm of a p-dimensional
vector x. The null hypothesis is rejected for large values of
Tn1,n2 . To obtain critical values for Tn1,n2 , Baringhaus and
Franz provide a nonparametric bootstrap procedure (18)
or, alternatively, the critical values may be computed by
approximating the asymptotic distribution of Tn1,n2 based
on the quadratic form of Normal random variables (19,20).
For the latter case, the problem of obtaining a critical value
for Tn1,n2 is approximated via

Pr{Tn1,n2 < x} ≈ Pr{νTQν < x}, [9]

where Q is a symmetric matrix and ν is a length N = n1+n2

vector of Normal random variables. In the case of Eq. [8],
the matrix Q may be interpreted as the specific contribu-
tion of the average distance, between a single multivariate
observation and all others, to the test statistic. Let H be
an orthonormal matrix that converts Q to diagonal form
� = H T QH , then Eq. [9] may be expressed as

Pr{ZT�Z < x} = Pr


N∑

j=1

λjξ
2
j < x

 , [10]
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where λj = �jj and ξ is a Normal random variable. Applying
the inverse Fourier transform to the characteristic func-
tion for the linear combination of χ2 variables in Eq. [10]
produces the critical value (20). We prefer the asymp-
totic approximation because it requires less computational
effort and is reproducible, whereas the bootstrap procedure
is iterative and induces an additional layer of stochastic
variability in the resulting P-values. The algorithms of Bar-
inghaus and Franz are available for download (21) and
Fortran code to implement the Imhof procedure may be
found in (20).

When pointwise distances between the two groups is
large the first term in Eq. [8] will dominate the subsequent
terms and produce a large test statistic. When the point-
wise distances are similar, the second and third terms will
suppress the first to produce a small test statistic. This is
an example of a location alternative, where the difference
between the two distributions is restricted to the loca-
tion parameter. It has been shown that the Cramér test has
power similar to that of the parametric t-test and Hotelling’s
T2-test for location alternatives (10). The Cramér statistic is
also sensitive to so-called dispersion alternatives where the
variance-covariance matrix differs between groups and the
location parameters are identical, but does not perform as
well as parametric tests. An example of a difference in dis-
persions would be where the spread between points in the
two groups, in six-dimensional space, differs even though
a difference between the centers of the two groups is not
apparent.

Non-Euclidean Metrics

As mentioned in the Introduction section, the use of
non-Euclidean distance metrics have been developed to
manipulate diffusion tensors. A particularly convenient
Riemannian metric is the log-Euclidean metric which
applies Euclidean calculations to the transformed diffu-
sion tensors via matrix logarithms (22). Thus, the Cramér
test may be applied to these transformed diffusion ten-
sors. When considering the multivariate vector form of
the diffusion tensor, we apply weights to the off-diagonal
terms to produce a rotationally-invariant Euclidean metric
using

d = [Dx,xDy ,y Dz,z
√

2Dx,y
√

2Dx,z
√

2Dy ,z]T, [11]

and a similarity-invariant log-Euclidean metric using

log(d) = [log(D)x,x log(D)y ,y log(D)z,z
√

2 log(D)x,y

× √
2 log(D)x,z

√
2 log(D)y ,z]T, [12]

as recommended in (22). Note, the term log(D)i,j is the
(i, j)th coefficient of the matrix logarithm of the diffusion
tensor denoted by log(D).

In practice the Cramér test, based on interpoint distances,
is applied to the two distinct collections of multivariate
vectors (denoting the two groups for comparison) given by
Eq. [11] for Euclidean distances and by Eq. [12] for log-
Euclidean distances.

METHODS

Simulations

DTI data were simulated for two groups of participants
(n1 = n2 = 20), where one of the groups represents a
hypothetical control population, and the other group a test
population. The sensitivity of the statistical tests was eval-
uated separately for two conditions between the groups:
different PV (principal eigenvector) with identical FA, and
identical PV with different FA. In both cases, the NMR
signal was simulated by sampling the tensors from 60 direc-
tions of diffusion encoding (23) with b = 700 s/mm2,
10 encodings with b = 0 s/mm2, and a Rician noise distri-
bution (SNR ≈ 20). The tensors were reconstructed using
the standard least-squares method (24).

Intersubject variability was achieved by drawing the dif-
fusion tensors from a Wishart distribution. The Wishart
distribution is a multivariate analogue to the χ2 distribu-
tion and is most commonly used to describe the covari-
ance matrix from multivariate statistics, although it is
more widely applicable to matrix-valued random vari-
ables (25). If X1, . . . , Xm are independent and identically
distributed as three-dimensional Gaussian random vari-
ables with zero mean and covariance matrix V , then the
maximum-likelihood estimator

S =
m∑

i=1

XiXT
i [13]

is a 3 × 3 random matrix and has a Wishart distribution
with m degrees of freedom. The expectation of S is given
by mV . Since we do not observe multivariate observa-
tions from the diffusion-weighted sequence it is difficult to
match the degrees of freedom with any parameter from the
acquisition. Values for the simulation studies were selected
to provide different levels of randomness by imposing a
distribution on the ideal diffusion tensor.

Participant Recruitment

Twenty-four patients with a history of migraine (age 35.0 ±
8.4 years, 16 F, 8 M) and 12 healthy matched controls (age
31.0 ± 8.0 years, 9 F, 3 M) were enrolled in the study. The
migraine patients all met the ICHD-II criteria (26). Informed
written consent was obtained for each participant before
the scanning session, and the Massachusetts General Hos-
pital Human Studies Committee approved all procedures
under Protocol #2002P-000652.

Image Acquisition

DTI scans were acquired on a 3 T Siemens Allegra
MRI scanner (Siemens, Erlangen, Germany). Head motion
was minimized using tightly padded clamps attached to
the head coil. The DTI scans used a single-shot, twice-
refocused echo planar sequence (27). The protocol param-
eters were TR/TE = 9200/91 ms, slice thickness = 2 mm
(0 mm gap), 64 axial slices, FOV 256 × 256 mm, matrix
128 × 128, 1 average, 60 directions of diffusion encod-
ing (23) with b = 700 s/mm2, and 10 encodings with
b = 0 s/mm2. High-resolution MPRAGE anatomical scans
were also collected.
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Table 1
Eigenvalues and Corresponding FA Values for the Simulation
Results Using Different Angles

FA (λ1, λ2, λ3)

0.69 (1.5, 0.4, 0.4)
0.54 (1.3, 0.5, 0.5)
0.36 (1.1, 0.6, 0.6)

The units for the eigenvalues are µm2/ms with the same trace value
of 2.3.

Preprocessing

Image preprocessing was performed using FreeSurfer
(http://surfer.nmr.mgh.harvard.edu), FSL (http://www.
fmrib.ox.ac.uk/fsl), and custom software developed at the
A. A. Martinos Center. The diffusion-weighted images

were corrected for head motion and residual eddy current
distortions using the FLIRT program (12-dof, mutual infor-
mation cost function, sinc resampling) (28,29). Diffusion
tensor and FA images were reconstructed from the
diffusion-weighted images (24,30) and spatially normal-
ized to MNI (Montreal Neurological Institute) space. The
spatial normalization was performed by registering the T2
image to a skull-stripped version of the MNI 152 T2 atlas.
The skull-stripping was performed using the BET program
(default values) (31). The registration was performed using
FLIRT (12-dof, correlation ratio cost function). The atlas
transformation was then applied to the diffusion tensor and
FA images (nearest neighbor resampling). Nearest neighbor
sampling was used to avoid averaging of the diffusion ten-
sors. For the diffusion tensor images, the rotational portion
of the affine atlas transform A was applied to the individual
diffusion tensors: D ← RDRT where R = A(AT A)−1/2 (32).

FIG. 1. Empirical size/power for simulated group comparisons (n1 = n2 = 20) of fiber orientation. FA is held constant (at 0.36, 0.54 and
0.69) while the fiber orientation is allowed to differ by 0◦–25◦ between the two groups. The degrees of freedom for the Wishart distribution
are 128, 64 and 32 and correspond to low, medium and high levels of subject-to-subject variability. The univariate test based solely on FA
follows the empirical size of the test α = 0.05.
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Statistical Analysis

Comparison between the migraine and control groups was
performed using a voxel-based analysis. The FA volumes
were compared using a t-test and the diffusion tensor
volumes were compared using the multivariate Cramér
test (see Theory section). The diffusion tensors were nor-
malized to unit trace; i.e., D ← D/Tr(D), to mitigate the
effects of trace differences, for example, due to CSF par-
tial volume and concentrate the comparison on differences
in diffusion orientation and anisotropy. Without the trace
normalization, the group statistical maps showed rim arti-
facts on the cortical surface and periventricular regions
due to morphometric differences between subjects. Multi-
ple comparisons correction was performed with the False
Discovery Rate (FDR) method with q = 0.05 (33). Multi-
ple comparisons control was performed at the cluster level
using the Monte Carlo permutation method (34). The null
distribution for the cluster size was computed at each voxel
using a significance threshold of P< 0.05 and 18-neighbor
voxel connectivity. The corrected significance of each clus-
ter was then determined from the permutation distribution.
The Monte Carlo calculation used 103 permutation trials.

RESULTS

Simulations

Empirical size and power calculations were performed on
the multivariate hypothesis testing procedures for group
comparisons using simulated DTI data under two condi-
tions. The first involved holding the FA constant between
the two groups, using the FA values in Table 1, and vary-
ing the PV Euler angles. One thousand group comparisons
(n1 = n2 = 20) were performed using each multivariate
hypothesis test (Hotelling T2, Cramér, log-Cramér, permu-
tation) and the univariate test (Student’s t-test) on FA. For
the different PV conditions, the eigenvalues were fixed
for all samples (λ1, λ2, λ3) = (1.5, 0.4, 0.4) µm2/ms and the
PV Euler angles were fixed at (0, 45◦, 0) for the first group
of subjects. The PV Euler angles (0, α, 0) were allowed to
vary where α ∈ {45◦, 50◦, 55◦, 60◦, 65◦, 70◦} for the second
group of subjects, thus creating a difference in orientations
between 0◦ and 25◦. All hypothesis tests were performed
with a signifiance level of 5%.

Figure 1 shows the empirical power of the four multivari-
ate tests (Hotelling T2, Cramér, log-Cramér, Permutation)
and the univariate test on FA for the PV comparison where
the two subject groups had identical FA but differing PV
Euler angles. The four rows in Fig. 1 differ by the number
of degrees of freedom used in the Wishart distribution when
simulating the group data. From top to bottom, the degrees
of freedom are 128, 64, 32, and in the last row no draw from
the Wishart distribution was performed. These choices cor-
respond to low, medium, high and no subject-to-subject
variability. The performance of all tests decreases, although
not uniformly, with a decrease in the number of degrees of
freedom associated with the Wishart distribution. When
the Wishart draw was omitted from the simulation proce-
dure all variability is through the measurement of the MR
signal only. The value of FA decreases from left to right in
the columns.

Table 2
Eigenvalues and Corresponding FA Values for the Simulation
Results Using Different FA Values

FA (λ1, λ2, λ3)

0.52
0.63
0.69
0.76
0.80
0.84





1.00
1.28
1.50, 0.4, 0.4
1.93
2.31
2.72




0.41
0.48
0.54
0.59
0.64
0.68





1.00
1.14
1.30, 0.5, 0.5
1.46
1.64
1.82




0.28
0.32
0.36
0.41
0.45
0.48





0.95
1.03
1.10, 0.6, 0.6
1.20
1.29
1.38


The units for the eigenvalues are µm2/ms.

The empirical power of the Cramér and log-Cramér tests,
derived from simulations, were nearly identical for almost
all angular differences under the three specific values of FA.
Hotelling’s T2 test was slightly inferior, by 5–25% depend-
ing on the simulation conditions, when compared with the
Cramér test regardless of the differing simulation condi-
tions. The multivariate permutation test exhibited reduced
power (by 5–50% depending on the simulation conditions)
compared to with the Cramér test, most significantly for
the smaller angular differences (5◦–15◦). The univariate
two-sample t-test applied to FA was also calculated for all
angular differences with an expected rejection rate of the
null hypothesis equivalent to the significance level of the
hypothesis test (i.e., 5%).

For the variable FA case, the eigenvalues of group 1 were
taken from Table 1 and applied to three choices of intersub-
ject variability parameterized by varying degrees of free-
dom from the Wishart distribution. The first eigenvalue λ1

was allowed to vary for group 2 to produce a range of FA val-
ues roughly centered around the three rows from Table 1.
The specific FA values, and their corresponding eigenval-
ues, are provided in Table 2. Figure 2 shows the empirical
power of the hypothesis tests from 1,000 simulated group
comparisons (n1 = n2 = 20). The structure is identical to
Fig. 1 in terms of degrees of freedom from the Wishart distri-
bution. The empirical power of the Cramér and multivari-
ate permutation tests were almost identical across the sim-
ulation conditions used and were substantially better than
the alternative univariate and multivariate tests. However,
the multivariate permutation test was the most powerful
test for all differences in FA between the two groups. The
three remaining tests, decreasing in power, were the uni-
variate test of FA based on the parametric t-test, Hotelling’s
T2 test and the log-Cramér test. When the two groups both
exhibited low FA (third column in Fig. 2) the t-test of FA
was more powerful than the Cramér test when the differ-
ences in FA between the two groups was small (0.04–0.05),
but then the Cramér test became more powerful when the
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FIG. 2. Empirical size/power for simulated group comparisons (n1 = n2 = 20) of fractional anisotropy (FA). The Euler angles applied to the
principal eigenvector are held constant while FA is allowed to differ by ±0.15 between the two groups. When the FA associated with each
group is the same, the hypothesis tests follow the empirical size of α = 0.05. The degrees of freedom for the Wishart distribution are 128, 64,
32 and correspond to low, medium and high levels of subject-to-subject variability.

differences in FA became larger (0.08–0.15). The improve-
ments in empirical power for the t-test of FA were modest at
best (15–20%) and only occurred for a very small subset of
simulated conditions. At larger differences in FA, the t-test
based on FA resulted in up to a 30% decrease in power
when compared with the multivariate permutation test.
Hotelling’s T2 test performed slightly worse than the uni-
variate test on FA with reductions in power ranging from
5 to 45% when compared with the multivariate permuta-
tion test. Finally, the log-Cramér test performed the worst
in the ability to detect differences in FA between the two
groups with reductions up to 70%, when compared with
the multivariate permutation test, observed in simulations.

Additional simulations were run with duplicating the
information provided so far, but with (n1, n2) = (40, 20).
No significant differences were observed when comparing
the two groups under differences in FA or Euler angles.

Migraine Data

With respect to the migraine data, we focus on a significant
cluster (cluster level p < 0.05) in the left postcentral gyrus
(peak MNI −28, −38, 52) detected by both the univariate
FA test and the multivariate tensor test (Fig. 3). The tensor-
based significance cluster extended from the central sulcus
to the crown of postcentral gyrus, whereas the cluster for
the FA comparison was restricted to the body of the gyrus
and had a smaller mediolateral extent. The volume of the
FA-based cluster was 0.232 cc compared to 0.624 cc for the
tensor-based cluster.

DISCUSSION

We have investigated both parametric and nonparametric
tests for comparing populations of tensors. Using Monte
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FIG. 3. Statistical parametric maps for (left) univariate FA comparison, and (right) multivariate tensor comparison. The displayed cluster was
significant at the p < 0.05 cluster level (permutation method).

Carlo simulations, we have shown that the preferred
method, the Cramér test on the unique diffusion tensor
elements, can detect diffusion tensor principal eigenvector
differences of 15 degrees with a power of 80% under typ-
ical design conditions. We have also shown that the test
is more sensitive to FA differences even when there is no
principal eigenvector difference. In the migraine data set,
the multivariate tensor test provided a 169% increase in the
volume of a signficant cluster compared to the univariate
FA test. Statistical group comparison of diffusion tensors
promises to boost the statistical sensitivity of DTI group
comparisons. The tensor comparison approach will also
extend the application of DTI to WM disorders character-
ized by a change in WM architecture without an associated
change in FA.

In a simulation setting the multivariate permutation and
Cramér tests were equally effective at detecting differences
in FA, when the direction of anisotropy was fixed for the
two subject groups, and superior to both all other mul-
tivariate hypothesis testing procedures considered in the
experiments. There appears to be an asymmetry in the
empirical power curves displayed in Fig. 2 implying that
detecting differences between higher values of FA is eas-
ier than detecting differences between lower values. This
is even more apparent when the FA for the reference
group is smaller; e.g., 0.36 versus 0.69. A more exhaustive
sampling of levels in FA for both groups in the simula-
tion study is required to better characterize this apparent
asymmetry.

As previously noted, the performance of all tests
decreases with a decrease in the degrees of freedom asso-
ciated with the Wishart distribution, which induces more
variability between subjects. The adaptation of the Cramér
test, which is based on Euclidean distances, to operate
on a specific example of a Riemannian metric (i.e., log-
Euclidean distances) did not improve the performance of
the test. Whereas Riemannian metrics are advantageous in
applications such as interpolation or regularization, from
a hypothesis testing perspective there is no reason at this
time to prefer the log-Euclidean distance for the specific
scenarios simulated in this paper. Initial investigations

into the consequences of applying matrix logarithms to
the diffusion tensors indicate that the six-dimensional
vectors between the two groups, when they are known
to be substantially different, are brought closer together
in six-dimensional space after the transformation. Thus,
working in the log-Euclidean space reduces the group
difference observed in Euclidean space. Given the rela-
tively recent emergence of non-Euclidean metrics in DTI,
elaborating on the differences in performance of the log-
Euclidean distance metric for various applications, specif-
ically statistical hypothesis testing, will provide a better
understanding to their relative advantages and disadvan-
tages.

In addition to the use of Euclidean or non-Euclidean
metrics, the choice of parameterizations for the diffu-
sion tensor could also be explored. The rotation-invariant
parameterization in Eq. [11] or the multivariate vector
form of the diffusion tensor in Eq. [2] have been used
here, but others are equally plausible. For example, the
eigenvalues and Euler angles after diagonalization were
inputs to a Bayesian estimation scheme in (35). Such an
alternative parameterization may or may not improve the
performance of the hypothesis test, but may allow an eas-
ier interpretation of the results—especially in the case
of the multivariate permutation test where the individ-
ual elements of the multariate vector are tested indepen-
dently and then combined at the end to form a single test
statistic.

It is important to note that the diffusion tensor is a
model of the underlying diffusion properties of tissue,
and thus, suffers from the assumptions imposed by the
model. One such assumption is that a single tensor is suffi-
cient to characterize the diffusion properties at every voxel.
This is not valid for a variety of anatomical regions in
the structure of WM and therefore all hypothesis testing
procedures considered here may have difficulty detecting
differences where the single tensor model breaks down.
The application of multivariate hypothesis testing to more
complicated models of white matter structure based on
DTI acquisitions (36) and also alternative high-resolution
angular diffusion imaging (HARDI) acquisition schemes
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such as q-ball imaging (37) will be the subject of future
study.

For the migraine patient data set, both the univariate FA
test and the multivariate tensor test detected a significant
cluster in the left postcentral gyrus. However, the cluster
from the tensor test traversed the length of the gyrus, con-
sistent with the expected geometry of the fiber pathway
originating from the ventral posterolateral (VPL) nucleus
of the thalamus and targeting S-I via the internal capsule
and corona radiata (38–40). In contrast, the cluster from the
FA test was restricted to the body of the gyrus.

Fibers entering the postcentral gyrus originate from the
VPL and are destined for layer IV of Brodmann areas 3,
1 and 2, collectively known as S-I. Within S-I, fibers car-
rying information from muscle stretch receptors insert into
area 3a, information from cutaneous innervation insert into
area 3b, information from deep pressure receptors insert
into area 2 and information from rapidly adapting receptors
insert into area 1. Layer II/III of each area in turn projects
to area 5 and S-II. It is known that areas 3 and 2 are located
on opposite banks of postcentral gyrus, separated by area 1,
which is located at the crown of the gyrus (38).

The apparent insertion of this fiber track delineated by
both the FA test and the tensor test clusters into the bank of
the postcentral gyrus is consistent with the known anatom-
ical and functional organization of areas 3, 1, and 2. Since
migraine is primarily referred cutaneous sensation, it is
reasonable to conclude that the cluster identified by the
multivariate tensor test appears to be inserting into area 3
of the postcentral gyrus. Furthermore, the finding of dif-
fusion alterations in postcentral gyrus WM is consistent
with the established involvement of somatosensory cortex
in migraine pathophysiology (41,42).

The significant clusters from the FA and tensor-based
comparisons both localized to left postcentral gyrus, but
the tensor-based cluster traversed the length of the gyrus
consistent with the projections of the corona radiata. The
larger spatial extent of the tensor-based cluster is poten-
tially attributable to two sources: differences in diffusion
orientation which are not detectable on the FA test or
the Cramér test’s higher sensitivity to FA differences, as
shown in the simulation studies (Figs. 1 and 2). The spe-
cific contributions of diffusion orientation and diffusion
anisotropy to the tensor differences could be determined by
testing for differences in the diffusion principal eigenvector
without including anisotropy information. This test could
also be performed using the Cramér method. The specific
contributions of diffusion anisotropy and diffusion orien-
tation to the tensor differences will be the subject of future
study.
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