J Magn Reson. 2010 Aug;205(2):235-41 doi: 10.1016/j.jmr.2010.05.004. 2010 May 10.

Simplified and scalable numerical solution for describing multi-pool chemical exchange saturation transfer (CEST) MRI contrast

Sun PZ.

Abstract

Chemical exchange saturation transfer (CEST) imaging is sensitive to dilute labile proton and microenvironment properties such as pH and temperature, and provides vital information complementary to the conventional MRI methods. Whereas the Bloch equations coupled by exchange terms (i.e., Bloch-McConnell equations) have been utilized to quantify 2-pool CEST contrast, it is tedious to extend the Bloch-McConnell equations to describe CEST contrast beyond four saturation transfer sites. Hence, it is necessary to develop a scalable yet reasonably accurate numerical solution to describe the complex multi-pool CEST contrast. It is postulated here that the multi-pool CEST contrast can be quantified by modifying the classic 2-pool model. Although the direct exchange among labile proton groups is often negligible, labile protons may be coupled indirectly through their interaction with bulk water protons, which has to be quantified. The coupling term was solved empirically, and the proposed simplified solution was shown in good agreement with the conventional simulation. Moreover, the proposed solution is scalable, and can be easily extended to describe multi-pool CEST contrast. In sum, our study established a simplified and scalable, yet reasonably accurate numerical solution, suitable for quantitatively describing multi-pool CEST contrast.

PMID: 20570196