J Cereb Blood Flow Metab. 1995 Nov;15(6):1109-21 doi: 10.1038/jcbfm.1995.138.

Stimulus parameters influence characteristics of optical intrinsic signal responses in somatosensory cortex

Blood AJ, Narayan SM, Toga AW.

Abstract

Optical imaging of intrinsic signals was performed in the barrel cortex of the rat during whisker deflections of varying frequencies (1 to 20 Hz) and durations (0.1 to 5 s). A dose-response relationship was shown between these stimuli and the characteristics of the optically recorded intrinsic signal response. At constant frequencies, longer stimulus durations increased response magnitude, as defined by mean pixel value in statistically determined regions of interest. At constant durations, higher stimulus frequencies increased response magnitude. Response magnitude was also increased by greater numbers of deflections. When stimulus number was constant, there were no differences in response magnitude, regardless of stimulus frequency and duration. Spatial extent of responses, as defined by number of pixels in regions of interest, did not differ between stimulus frequencies, durations, or numbers. Comparison of the time to reach peak intrinsic signal response after stimulus onset ("time-to-peak") suggested that higher frequencies were associated with faster time-to-peak. Registration of intrinsic signal responses with cytochrome oxidase-stained whisker barrels demonstrated that responses were located over the barrel corresponding to the stimulated whisker. In summary, we have shown that the absolute number of stimuli delivered to the system is, at least for short stimulus periods (

PMID: 7593344