Mov Disord. 1996 Nov;11(6):619-26 doi: 10.1002/mds.870110605.

Striatal interneurons in Huntington's disease: selective increase in the density of calretinin-immunoreactive medium-sized neurons

Cicchetti F, Parent A.

Abstract

The marked atrophy of the striatum seen in Huntington's disease (HD) is largely due to a massive neuronal loss that affects the striatal projection neurons more severely than the local circuit neurons. We recently reported the existence of a new class of interneurons characterized by their immunoreactivity for the calcium-binding protein calretinin in the human striatum. In the present immunohistochemical study, we compared the distribution and relative density of the calretinin-expressing interneurons in the striata of four normal individuals and four patients with HD (grade 1 to 3). The population of calretinin-containing interneurons comprised (a) a small subset of large (17- to 44-microns), multipolar neurons with five to seven long, aspiny, and highly branched dendrites and (b) a large number of medium-sized (8- to 18-microns), round-to-oval neurons with two to three long, varicose, and poorly branched dendrites. Both types of chemospecific neurons occurred throughout the striatum in all specimens examined, but the density of the medium-sized neurons was much higher in patients with HD than in controls. A quantitative analysis showed a significant (p

PMID: 8914086