Radiology. 2005 Dec;237(3):781-9 doi: 10.1148/radiol.2373041630.

Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional study performed by Biomedical Informatics Research Network

Zou KH, Greve DN, Wang M, Pieper SD, Warfield SK, White NS, Manandhar S, Brown GG, Vangel MG, Kikinis R, Wells WM 3rd; FIRST BIRN Research Group.

Abstract

PURPOSE: To prospectively investigate the factors--including subject, brain hemisphere, study site, field strength, imaging unit vendor, imaging run, and examination visit--affecting the reproducibility of functional magnetic resonance (MR) imaging activations based on a repeated sensory-motor (SM) task.
MATERIALS AND METHODS: The institutional review boards of all participating sites approved this HIPAA-compliant study. All subjects gave informed consent. Functional MR imaging data were repeatedly acquired from five healthy men aged 20-29 years who performed the same SM task at 10 sites. Five 1.5-T MR imaging units, four 3.0-T units, and one 4.0-T unit were used. The subjects performed bilateral finger tapping on button boxes with a 3-Hz audio cue and a reversing checkerboard. In a block design, 15-second epochs of alternating baseline and tasks yielded 85 acquisitions per run. Functional MR images were acquired with block-design echo-planar or spiral gradient-echo sequences. Brain activation maps standardized in a unit-sphere for the left and right hemispheres of each subject were constructed. Areas under the receiver operating characteristic curve, intraclass correlation coefficients, multiple regression analysis, and paired Student t tests were used for statistical analyses.
RESULTS: Significant factors were subject (P CONCLUSION: MR imaging at 3.0- and 4.0-T yielded higher reproducibility across sites and significantly better results than 1.5-T imaging. The effects of subject, k-space, and field strength on examination reproducibility were significant.

PMID: 16304101