J Cereb Blood Flow Metab. 2000 Sep;20(9):1341-51 doi: 10.1097/00004647-200009000-00009.

Is all perfusion-weighted magnetic resonance imaging for stroke equal? The temporal evolution of multiple hemodynamic parameters after focal ischemia in rats correlated with evidence of infarction

Zaharchuk G, Yamada M, Sasamata M, Jenkins BG, Moskowitz MA, Rosen BR.

Abstract

Although perfusion-weighted imaging techniques are increasingly used to study stroke, no particular hemodynamic variable has emerged as a standard marker for accumulated ischemic damage. To better characterize the hemodynamic signature of infarction. the authors have assessed the severity and temporal evolution of ischemic hemodynamics in a middle cerebral artery occlusion model in the rat. Cerebral blood flow (CBF) and total and microvascular cerebral blood volume (CBV) changes were measured with arterial spin labeling and steady-state susceptibility contrast magnetic resonance imaging (MRI), respectively, and analyzed in regions corresponding to infarcted and spared ipsilateral tissue, based on 2,3,5-triphenyltetrazolium chloride histology sections after 24 hours ischemia. Spin echo susceptibility contrast was used to measure microvascular-weighted CBV, which had a maximum sensitivity for vessels with radii between 4 and 30 microm. Serial measurements between 1 and 3 hours after occlusion showed no change in CBF (22 +/- 20% of contralateral, mean +/- SD) or in total CBV (78 +/- 13% of contralateral) in regions destined to infarct. However, microvascular CBV progressively declined from 72 +/- 5% to 64 +/- 11% (P

PMID: 10994856