Bioconjug Chem. 2007 Nov-Dec;18(6):2024-8 doi: 10.1021/bc070110w. 2007 Sep 25.

Magnetic relaxation switch detection of human chorionic gonadotrophin

Kim GY, Josephson L, Langer R, Cima MJ.

Abstract

Functionalized nanoparticle contrast agents, also known as magnetic relaxation switches (MRS), were prepared to detect protein A and the beta subunit of human chorionic gonadotrophin (hCG-beta). Antibodies were attached to cross-linked iron oxide (CLIO) nanoparticles using standard peptide chemistry. Protein A was used as a simple model analyte, as it is naturally multivalent and can bind multiple CLIO-IgG simultaneously. The addition of PA to CLIO-IgG resulted in transverse relaxation time (T2) shortening compared to a blank control as seen by NMR relaxometry measurements. Analyte-induced aggregation was confirmed by light scattering particle size analysis. A two-particle system was designed to measure hCG-beta, as it is not multivalent and requires conjugation of a matched pair of monoclonal antibodies to CLIO (referred to as C95 and C97). Measurement of hCG-beta is important, as elevated serum levels are associated with malignancies including testicular and ovarian cancers. The addition of hCG-beta to C95 and C97 resulted in T2 shortening with a linear dynamic concentration range of 0.1 to 1 molecules of analyte per nanoparticle. Similar data were obtained for the hCG dimer. Observations with higher stoichiometric ratios of analyte to nanoparticle and increased nanoparticle valency were also made. This method can potentially be adapted to detect other biomarkers in solution.

PMID: 17892270