Regul Pept. 2006 Dec 10;137(3):162-7 doi: 10.1016/j.regpep.2006.07.005. 2006 Aug 22.

A new technique for in vivo imaging of specific GLP-1 binding sites: first results in small rodents

Gotthardt M, Lalyko G, van Eerd-Vismale J, Keil B, Schurrat T, Hower M, Laverman P, Behr TM, Boerman OC, Göke B, Béhé M.

Abstract

EXPERIMENTAL OBJECTIVES: In vivo imaging of GLP-1 receptor-positive tissues may allow examination of physiologic and pathophysiologic processes. Based on the GLP-1 analog Exendin 4, we have developed a radiolabeled compound specifically targeting the GLP-1 receptor (DTPA-Lys40-Exendin 4). This work aims to detect GLP-1 receptor-positive tissues by biodistribution studies and in vivo small animal imaging studies. For in vivo imaging, a high-resolution multi-pinhole SPECT (single photon emission computed tomography) system was used in conjunction with an MRI (magnetic resonance imaging) system for image fusion.
RESULTS: DTPA-Lys40-Exendin 4 can be labeled with 111In to high specific activity (40 GBq/micromol). The radiochemical purity reliably exceeded 95%. Using this compound for in vivo small animal imaging of rats and mice as well as for biodistribution studies, specific GLP-1 binding sites could be detected in stomach, pancreas, lung, adrenals, and pituitary. Receptor-positive tissues were visualized with a high-resolution SPECT system with a resolution of less than 1 mm.
CONCLUSIONS: The new technique using DTPA-Lys40-Exendin 4 allows highly sensitive imaging of GLP-1 receptor-positive tissues in vivo. Therefore, intra-individual follow-up studies of GLP-1 receptor-positive tissue could be conducted in vivo.

PMID: 16930741