Abstract
We present a technique for automatically assigning a neuroanatomical label to each location on a cortical surface model based on probabilistic information estimated from a manually labeled training set. This procedure incorporates both geometric information derived from the cortical model, and neuroanatomical convention, as found in the training set. The result is a complete labeling of cortical sulci and gyri. Examples are given from two different training sets generated using different neuroanatomical conventions, illustrating the flexibility of the algorithm. The technique is shown to be comparable in accuracy to manual labeling.