J Am Coll Cardiol. 2008 Aug 5;52(6):483-91 doi: 10.1016/j.jacc.2008.03.063.

Noninvasive detection of macrophage-rich atherosclerotic plaque in hyperlipidemic rabbits using "positive contrast" magnetic resonance imaging

Korosoglou G, Weiss RG, Kedziorek DA, Walczak P, Gilson WD, Schär M, Sosnovik DE, Kraitchman DL, Boston RC, Bulte JW, Weissleder R, Stuber M.

Abstract

OBJECTIVES: This study was designed to identify macrophage-rich atherosclerotic plaque noninvasively by imaging the tissue uptake of long-circulating superparamagnetic nanoparticles with a positive contrast off-resonance imaging sequence (inversion recovery with ON-resonant water suppression [IRON]).
BACKGROUND: The sudden rupture of macrophage-rich atherosclerotic plaques can trigger the formation of an occlusive thrombus in coronary vessels, resulting in acute myocardial infarction. Therefore, a noninvasive technique that can identify macrophage-rich plaques and thereby assist with risk stratification of patients with atherosclerosis would be of great potential clinical utility.
METHODS: Experiments were conducted on a clinical 3-T magnetic resonance imaging (MRI) scanner in 7 heritable hyperlipidemic and 4 control rabbits. Monocrystalline iron-oxide nanoparticles (MION)-47 were administrated intravenously (2 doses of 250 mumol Fe/kg), and animals underwent serial IRON-MRI before injection of the nanoparticles and serially after 1, 3, and 6 days.
RESULTS: After administration of MION-47, a striking signal enhancement was found in areas of plaque only in hyperlipidemic rabbits. The magnitude of enhancement on magnetic resonance images had a high correlation with the number of macrophages determined by histology (p CONCLUSIONS: Using IRON-MRI in conjunction with superparamagnetic nanoparticles is a promising approach for the noninvasive evaluation of macrophage-rich, vulnerable plaques.

PMID: 18672170