Proton-based chemical shift imaging probes were encapsulated inside nano-carriers to increase the sensivitity of the reporters. Co-encapsulation with a relaxation agent results in improved sensitivity and suppresses background signals. Simultaneous imaging of different chemical shift reporters allows multiplexed detection.
The evaluation of spinal cord neuronal activity in humans with functional magnetic resonance imaging (fMRI) is technically challenging. Major difficulties arise from cardiac and respiratory movement artifacts that constitute significant sources of noise. In this paper we assessed the Correction of Structured noise using spatial Independent Component Analysis (CORSICA). FMRI data of the cervical spinal cord were acquired in 14 healthy subjects using gradient-echo EPI. Nociceptive electrical stimuli were applied to the thumb.
Studies suggest that neuroprotective effects of normobaric oxygen (NBO) therapy in acute stroke are partly mediated by hemodynamic alterations. We investigated cerebral hemodynamic effects of repeated NBO exposures. Serial magnetic resonance imaging (MRI) was performed in Wistar rats subjected to focal ischemic stroke. Normobaric oxygen-induced functional cerebral blood volume (fCBV) responses were analyzed. All rats had diffusion-weighted MRI (DWI) lesions within larger perfusion deficits, with DWI lesion expansion after 3 hours.
Structural analysis of MRI data on the cortical surface usually focuses on cortical thickness. Cortical surface area, when considered, has been measured only over gross regions or approached indirectly via comparisons with a standard brain. Here we demonstrate that direct measurement and comparison of the surface area of the cerebral cortex at a fine scale is possible using mass conservative interpolation methods. We present a framework for analyses of the cortical surface area, as well as for any other measurement distributed across the cortex that is areal by nature.
Resting state functional connectivity reveals intrinsic, spontaneous networks that elucidate the functional architecture of the human brain. However, valid statistical analysis used to identify such networks must address sources of noise in order to avoid possible confounds such as spurious correlations based on non-neuronal sources.
To accelerate magnetic resonance imaging using uniformly undersampled (nonrandom) parallel imaging beyond what is achievable with generalized autocalibrating partially parallel acquisitions (GRAPPA) alone, the DEnoising of Sparse Images from GRAPPA using the Nullspace method is developed. The trade-off between denoising and smoothing the GRAPPA solution is studied for different levels of acceleration.
Islet transplantation has recently emerged as an acceptable clinical modality for restoring normoglycemia in patients with type 1 diabetes mellitus (T1DM). The long-term survival and function of islet grafts is compromised by immune rejection-related factors. Downregulation of factors that mediate immune rejection using RNA interference holds promise for improving islet graft resistance to damaging factors after transplantation.
Type 1 diabetes mellitus results in impaired insulin production by pancreatic islets due to autoimmunity. Islet transplantation has recently emerged as a promising treatment for this disease. To visualize and monitor endogenous and transplanted islets, non-invasive strategies are currently being developed. These include strategies for in vivo magnetic resonance imaging of microvascular changes during diabetes development, tracking the recruitment of diabetogenic T cells to the pancreas, and imaging of endogenous and transplanted islet mass.
Cell replacement therapy with stem cells holds tremendous therapeutic potential for treating neurodegenerative diseases. Over the last decade, molecular imaging techniques have proven to be of great value in tracking transplanted cells and assessing the therapeutic efficacy. This current review summarizes the role and capabilities of different molecular imaging modalities including optical imaging, nuclear imaging and magnetic resonance imaging in the field of stem cell therapy for neurodegenerative disorders.
Two decades of technology development has continually improved the image quality, spatial-temporal resolution, and sensitivity of the fMRI acquisition. In this article, I assess our current acquisition needs, briefly examine the technological breakthroughs that have benefited fMRI in the past, and look at some promising technologies that are currently under development to try to envision what the fMRI acquisition protocol of the future might look like.